Elsafoury, Fatma and Katsigiannis, Stamos and Pervez, Zeeshan and Ramzan, Naeem (2021) 'When the timeline meets the pipeline: A survey on automated cyberbullying detection.', IEEE access., 9 . pp. 103541-103563.
Abstract
Web 2.0 helped user-generated platforms to spread widely. Unfortunately, it also allowed for cyberbullying to spread. Cyberbullying has negative effects that could lead to cases of depression and low self-esteem. It has become crucial to develop tools for automated cyberbullying detection. The research on developing these tools has been growing over the last decade, especially with the recent advances in machine learning and natural language processing. Given the large body of work on this topic, it is vital to critically review the literature on cyberbullying within the context of these latest advances. In this paper, we survey the automated detection of cyberbullying. Our survey sheds light on some challenges and limitations for the field. The challenges range from defining cyberbullying, data collection, and feature representation to model selection, training, and evaluation. We also provide some suggestions for improving the task of cyberbullying detection. In addition to the survey, we propose to improve the task of cyberbullying detection by addressing some of the raised limitations: 1) Using recent contextual language models like BERT for the detection of cyberbullying; 2) Using slang-based word embeddings to generate better representations of the cyberbullying-related datasets. Our results show that BERT outperforms state-of-the-art cyberbullying detection models and deep learning models. The results also show that deep learning models initialized with slang-based word embeddings outperform deep learning models initialized with traditional word embeddings.
Item Type: | Article |
---|---|
Full text: | (AM) Accepted Manuscript Available under License - Creative Commons Attribution 4.0. Download PDF (2330Kb) |
Status: | Peer-reviewed |
Publisher Web site: | https://doi.org/10.1109/ACCESS.2021.3098979 |
Publisher statement: | CCBY - IEEE is not the copyright holder of this material. Please follow the instructions via https://creativecommons.org/licenses/by/4.0/ to obtain full-text articles and stipulations in the API documentation. |
Date accepted: | 17 July 2021 |
Date deposited: | 29 July 2021 |
Date of first online publication: | 21 July 2021 |
Date first made open access: | 29 July 2021 |
Save or Share this output
Export: | |
Look up in GoogleScholar |