Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 ≲ z ≲ 3 Star-forming Galaxies

Jiménez-Andrade, E.F. and Murphy, E.J. and Heywood, I. and Smail, I. and Penner, K. and Momjian, E. and Dickinson, M. and Armus, L. and Lazio, T.J.W. (2021) 'The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 ≲ z ≲ 3 Star-forming Galaxies.', The Astrophysical Journal, 910 (2). p. 106.

Abstract

o investigate the growth history of galaxies, we measure the rest-frame radio, ultraviolet (UV), and optical sizes of 98 radio-selected, star-forming galaxies (SFGs) distributed over 0.3 ≲ z ≲ 3 with a median stellar mass of $\mathrm{log}({M}_{\star }/{M}_{\odot })\approx 10.4$. We compare the size of galaxy stellar disks, traced by rest-frame optical emission, relative to the overall extent of star formation activity that is traced by radio continuum emission. Galaxies in our sample are identified in three Hubble Frontier Fields: MACS J0416.1−2403, MACS J0717.5+3745, and MACS J1149.5+2223. Radio continuum sizes are derived from 3 and 6 GHz radio images (≲0farcs6 resolution, ≈0.9 μJy beam−1 noise level) from the Karl G. Jansky Very Large Array. Rest-frame UV and optical sizes are derived using observations from the Hubble Space Telescope and the Advanced Camera for Surveys and Wide Field Camera 3 instruments. We find no clear dependence between the 3 GHz radio size and stellar mass of SFGs, which contrasts with the positive correlation between the UV/optical size and stellar mass of galaxies. Focusing on SFGs with $\mathrm{log}({M}_{\star }/{M}_{\odot })\gt 10$, we find that the radio/UV/optical emission tends to be more compact in galaxies with high star formation rates (≳100 M⊙ yr−1), suggesting that a central, compact starburst (and/or an active galactic nucleus) resides in the most luminous galaxies of our sample. We also find that the physical radio/UV/optical size of radio-selected SFGs with log(M⋆/M⊙) > 10 increases by a factor of 1.5–2 from z ≈ 3 to z ≈ 0.3, yet the radio emission remains two to three times more compact than that from the UV/optical. These findings indicate that these massive, radio-selected SFGs at 0.3 ≲ z ≲ 3 tend to harbor centrally enhanced star formation activity relative to their outer disks.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
(1882Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.3847/1538-4357/abe876
Publisher statement:© 2021. The American Astronomical Society. All rights reserved
Date accepted:19 February 2021
Date deposited:16 September 2021
Date of first online publication:02 April 2021
Date first made open access:16 September 2021

Save or Share this output

Export:
Export
Look up in GoogleScholar