Skip to main content

Research Repository

Advanced Search

Rapid eruptive transitions from low to high intensity explosions and effusive activity: insights from textural analysis of a small-volume trachytic eruption, Ascension Island, South Atlantic

Davies, Bridie V.; Brown, Richard J.; Barclay, Jenni; Scarrow, Jane H.; Herd, Richard A.

Rapid eruptive transitions from low to high intensity explosions and effusive activity: insights from textural analysis of a small-volume trachytic eruption, Ascension Island, South Atlantic Thumbnail


Authors

Bridie V. Davies

Jenni Barclay

Jane H. Scarrow

Richard A. Herd



Abstract

Proximal deposits of small-volume trachytic eruptions are an under-studied record of eruption dynamics despite being common across a range of settings. The 59 ± 4 ka Echo Canyon deposits, Ascension Island, resulted from a small-volume explosive-effusive trachytic eruption. Variations in juvenile clast texture reveal changes in ascent dynamics and transitions in eruption style. Five dominant textural types are identified within the pumice lapilli population. Early Strombolian-Vulcanian eruption phases are typified by macro- and micro-vesicular equant clast types. Sheared clasts are most abundant at the eruption peak, transitioning to dense clasts in later phases due to shear-induced coalescence, outgassing and vesicle collapse. Melt densification and outgassing via tuffisite veins increased plume density, contributing to partial column collapse and the explosive-effusive transition. Bulk vesicularity distributions indicate a shift in dominant fragmentation mechanism during the eruption, from early-stage bubble interference and rupture to late-stage transient fragmentation, with a transient peak of Plinian activity. Dome and lava groundmass crystallinities of up to 70% indicate near-complete degassing during effusive phases, followed by shallow over pressurisation and a final less explosive phase. We provide textural evidence for high-intensity explosive phases and rapid transitions in eruptive style during small-volume trachytic eruptions and consider the impact of trachytic melt compositions on underlying dynamics of these short-lived, explosive events. This analysis demonstrates the value of detailed stratigraphy in understanding critical changes in eruption dynamics and the timescales over which they may occur which is of particular value in anticipating future eruptions of this type.

Citation

Davies, B. V., Brown, R. J., Barclay, J., Scarrow, J. H., & Herd, R. A. (2021). Rapid eruptive transitions from low to high intensity explosions and effusive activity: insights from textural analysis of a small-volume trachytic eruption, Ascension Island, South Atlantic. Bulletin of Volcanology, 83(9), Article 58. https://doi.org/10.1007/s00445-021-01480-1

Journal Article Type Article
Acceptance Date Jul 5, 2021
Online Publication Date Aug 6, 2021
Publication Date 2021
Deposit Date Nov 1, 2021
Publicly Available Date Nov 23, 2021
Journal Bulletin of Volcanology
Print ISSN 0258-8900
Electronic ISSN 1432-0819
Publisher Springer
Peer Reviewed Peer Reviewed
Volume 83
Issue 9
Article Number 58
DOI https://doi.org/10.1007/s00445-021-01480-1

Files

Published Journal Article (20.6 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.





You might also like



Downloadable Citations