We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Crowd Counting via Segmentation Guided Attention Networks and Curriculum Loss

Wang, Q. and Breckon, T.P. (2022) 'Crowd Counting via Segmentation Guided Attention Networks and Curriculum Loss.', IEEE Transactions on Intelligent Transportation Systems .


Automatic crowd behaviour analysis is an important task for intelligent transportation systems to enable effective flow control and dynamic route planning for varying road participants. Crowd counting is one of the keys to automatic crowd behaviour analysis. Crowd counting using deep convolutional neural networks (CNN) has achieved encouraging progress in recent years. Researchers have devoted much effort to the design of variant CNN architectures and most of them are based on the pre-trained VGG16 model. Due to the insufficient expressive capacity, the backbone network of VGG16 is usually followed by another cumbersome network specially designed for good counting performance. Although VGG models have been outperformed by Inception models in image classification tasks, the existing crowd counting networks built with Inception modules still only have a small number of layers with basic types of Inception modules. To fill in this gap, in this paper, we firstly benchmark the baseline Inception-v3 model on commonly used crowd counting datasets and achieve surprisingly good performance comparable with or better than most existing crowd counting models. Subsequently, we push the boundary of this disruptive work further by proposing a Segmentation Guided Attention Network (SGANet) with Inception-v3 as the backbone and a novel curriculum loss for crowd counting. We conduct thorough experiments to compare the performance of our SGANet with prior arts and the proposed model can achieve state-of-the-art performance with MAE of 57.6, 6.3 and 87.6 on ShanghaiTechA, ShanghaiTechB and UCF_QNRF, respectively

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Publisher statement:© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Date accepted:14 December 2021
Date deposited:05 January 2022
Date of first online publication:2022
Date first made open access:05 January 2022

Save or Share this output

Look up in GoogleScholar