We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation

Cox, Harrison J. and Sharples, Gary J. and Badyal, Jas Pal S. (2021) 'Tea–Essential Oil–Metal Hybrid Nanocoatings for Bacterial and Viral Inactivation.', ACS applied nano materials., 4 (11). pp. 12619-12628.


Natural plant-derived antimicrobial nanocoatings have been synthesized by mixing brewed tea with cinnamaldehyde oil. Concurrent addition of copper or silver salts produces hybrid tea–cinnamaldehyde–copper or tea–cinnamaldehyde–silver nanocoatings, respectively. Tea–cinnamaldehyde, tea–cinnamaldehyde–copper, and tea–cinnamaldehyde–silver coatings are all found to display strong antibacterial efficacy against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus (Log10 Reduction = 8.44 and 7.90, respectively). Tea–cinnamaldehyde–copper and tea–cinnamaldehyde–silver hybrid nanocoatings deposited onto nonwoven polypropylene provide 98.6 and 99.8% deactivation, respectively, toward murine coronavirus MHV-A59 (a potential surrogate for COVID-19 global pandemic coronavirus SARS-CoV-2). Key advantages of this approach are that the coating fabrication involves just a single step, utilizes cheap reagents (which are widely available over the counter to the general public), does not require any equipment apart from a container, and the coatings spontaneously adhere to a variety of substrate materials (including silicon, glass, polyester, nonwoven polypropylene, poly(tetrafluoroethylene), and cotton). Tea is one of the most ubiquitous beverages in the world, meaning that these antimicrobial coatings could be produced locally almost anywhere and by anyone without the need for any specialized technical training or expertize (for example, at remote field hospitals during humanitarian crises and in low-income countries).

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
Publisher Web site:
Publisher statement:© 2021 The Authors. Published by American Chemical Society
Date accepted:07 October 2021
Date deposited:01 February 2022
Date of first online publication:22 October 2021
Date first made open access:01 February 2022

Save or Share this output

Look up in GoogleScholar