Skip to main content

Research Repository

Advanced Search

Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru

Lee, E.; Ross, N.; Henderson, A.C.G.; Russell, A.J.; Jamieson, S.S.R.; Fabel, D.

Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru Thumbnail


Authors

E. Lee

N. Ross

A.C.G. Henderson

A.J. Russell

D. Fabel



Abstract

Characterising glaciological change within the tropical Andes is important because tropical glaciers are sensitive to climate change. Our understanding of glacier dynamics and how tropical glaciers respond to global climate perturbations is poorly constrained. Studies of past glaciation in the tropical Andes have focused on locations where glaciers are still present or recently vacated cirques at high elevations. Few studies focused on lower elevation localities because it was assumed glaciers did not exist or were not as extensive. We present the first geomorphological evidence for past glaciations of the Lagunas de Las Huaringas, northern Peru, at elevations of 3,900–2,600 m a.s.l. Mapping was conducted using remotely-sensed optical imagery and a newly created high-resolution (∼2.5 m) digital elevation model (DEM). The area has abundant evidence for glaciation, including moraines, glacial cirques, hummocky terrain, glacial lineations and ice-sculpted bedrock. Two potential models for glaciation are hypothesised: 1) plateau-fed ice cap, or 2) valley glaciation. Assuming glaciers reached their maximum extent during the Local Last Glacial Maximum (LLGM), between 23.5 ± 0.5 and 21.2 ± 0.8 ka, the maximum reconstructed glacial area was 75.6 km2. A mean equilibrium line altitude (ELA) of 3,422 ± 30 m was calculated, indicating an ELA change of −1,178 ± 10 m compared to modern snowline elevation. There is an east to west ELA elevation gradient, lower in the east and higher in the west, in-line with modern day transfer of moisture. Applying lapse rates between 5.5 and 7.5°C/km provides a LLGM temperature cooling of between 6.5–8.8°C compared to present. These values are comparable to upper estimates from other studies within the northern tropical Andes and from ice-core reconstructions. The mapping of glacial geomorphology within the Lagunas de las Huaringas, evidences, for the first time, extensive glaciation in a low elevation region of northern Peru, with implications for our understanding of past climate in the sub-tropics. Observations and reconstructions support a valley, rather than ice cap glaciation. Further work is required to constrain the timing of glaciations, with evidence of moraines younger than the LLGM up-valley of maximum glacier extents. Numerical modelling will also enable an understanding of the controls of glaciation within the region.

Citation

Lee, E., Ross, N., Henderson, A., Russell, A., Jamieson, S., & Fabel, D. (2022). Palaeoglaciation in the low latitude, low elevation tropical Andes, northern Peru. Frontiers in Earth Science, 10, Article 838826. https://doi.org/10.3389/feart.2022.838826

Journal Article Type Article
Acceptance Date Mar 8, 2022
Online Publication Date Apr 11, 2022
Publication Date 2022
Deposit Date Mar 8, 2022
Publicly Available Date Jun 20, 2022
Journal Frontiers in Earth Science
Publisher Frontiers Media
Peer Reviewed Peer Reviewed
Volume 10
Article Number 838826
DOI https://doi.org/10.3389/feart.2022.838826

Files

Published Journal Article (7.9 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
© 2022 Lee, Ross, Henderson, Russell, Jamieson and Fabel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.





You might also like



Downloadable Citations