Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Towards Graph Representation Learning Based Surgical Workflow Anticipation

Zhang, Xiatian and Al Moubayed, Noura and Shum, Hubert P.H. (2022) 'Towards Graph Representation Learning Based Surgical Workflow Anticipation.', 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) Ioannina, Greece, 27-30 Sept 2022.

Abstract

Surgical workflow anticipation can give predictions on what steps to conduct or what instruments to use next, which is an essential part of the computer-assisted intervention system for surgery, e.g. workflow reasoning in robotic surgery. However, current approaches are limited to their insufficient expressive power for relationships between instruments. Hence, we propose a graph representation learning framework to comprehensively represent instrument motions in the surgical workflow anticipation problem. In our proposed graph representation, we maps the bounding box information of instruments to the graph nodes in the consecutive frames and build inter-frame/inter-instrument graph edges to represent the trajectory and interaction of the instruments over time. This design enhances the ability of our network on modeling both the spatial and temporal patterns of surgical instruments and their interactions. In addition, we design a multi-horizon learning strategy to balance the understanding of various horizons indifferent anticipation tasks, which significantly improves the model performance in anticipation with various horizons. Experiments on the Cholec80 dataset demonstrate the performance of our proposed method can exceed the state-of-the-art method based on richer backbones, especially in instrument anticipation (1.27 v.s. 1.48 for inMAE; 1.48 v.s. 2.68 for eMAE). To the best of our knowledge, we are the first to introduce a spatial-temporal graph representation into surgical workflow anticipation.

Item Type:Conference item (Paper)
Full text:(AM) Accepted Manuscript
Download PDF
(1314Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1109/BHI56158.2022.9926801
Publisher statement:© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Date accepted:19 July 2022
Date deposited:09 August 2022
Date of first online publication:04 November 2022
Date first made open access:01 October 2022

Save or Share this output

Export:
Export
Look up in GoogleScholar