We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Aging in a mean field elastoplastic model of amorphous solids

Parley, Jack T. and Fielding, Suzanne M. and Sollich, Peter (2020) 'Aging in a mean field elastoplastic model of amorphous solids.', Physics of Fluids, 32 (12). p. 127104.


We construct a mean-field elastoplastic description of the dynamics of amorphous solids under arbitrary time-dependent perturbations, building on the work of Lin and Wyart [Phys. Rev. X 6, 011005 (2016)] for steady shear. Local stresses are driven by power-law distributed mechanical noise from yield events throughout the material, in contrast to the well-studied Hébraud–Lequeux model where the noise is Gaussian. We first use a mapping to a mean first passage time problem to study the phase diagram in the absence of shear, which shows a transition between an arrested and a fluid state. We then introduce a boundary layer scaling technique for low yield rate regimes, which we first apply to study the scaling of the steady state yield rate on approaching the arrest transition. These scalings are further developed to study the aging behavior in the glassy regime for different values of the exponent μ characterizing the mechanical noise spectrum. We find that the yield rate decays as a power-law for 1 < μ < 2, a stretched exponential for μ = 1, and an exponential for μ < 1, reflecting the relative importance of far-field and near-field events as the range of the stress propagator is varied. A comparison of the mean-field predictions with aging simulations of a lattice elastoplastic model shows excellent quantitative agreement, up to a simple rescaling of time.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2020 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Parley, Jack T., Fielding, Suzanne M. & Sollich, Peter (2020). Aging in a mean field elastoplastic model of amorphous solids. Physics of Fluids 32(12): 127104 and may be found at
Date accepted:13 November 2020
Date deposited:09 August 2022
Date of first online publication:04 November 2020
Date first made open access:09 August 2022

Save or Share this output

Look up in GoogleScholar