Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Comparative analysis of lanthanide excited state quenching by electronic energy and electron transfer processes

Parker, David and Fradgley, Jack D. and Delbianco, Martina and Starck, Matthieu and Walton, James W. and Zwier, Jurriaan M. (2022) 'Comparative analysis of lanthanide excited state quenching by electronic energy and electron transfer processes.', Faraday Discussions, 234 . 159 - 174.

Abstract

The relative sensitivities of structurally related Eu(III) complexes to quenching by electron and energy transfer processes have been compared. In two sets of 9-coordinate complexes based on 1,4,7-triazacyclononane, the Eu emission lifetime decreased as the number of conjugated sensitising groups and the number of unbound ligand N atoms increased, consistent with photoinduced electron transfer to the excited Eu(III) ion that is suppressed by N-protonation. Quenching of the Eu 5D0 excited state may also occur by electronic energy transfer, and the quenching of a variety of 9-coordinate complexes by a cyanine dye with optimal spectral overlap occurs by an efficient FRET process, defined by a Förster radius (R0) value of 68 Å and characterised by second rate constants in the order of 109 M−1 s−1; these values were insensitive to changes in the ligand structure and to the overall complex hydrophilicity. Quenching of the Eu and Tb excited states by energy transfer to Mn(II) and Cu(II) aqua ions occurred over much shorter distances, with rate constants of around 106 M−1 s−1, owing to the much lower spectral overlap integral. The calculated R0 values were estimated to be between 2.5 to 4 Å in the former case, suggesting the presence of a Dexter energy transfer mechanism that requires much closer contact, consistent with the enhanced sensitivity of the rate of quenching to the degree of steric shielding of the lanthanide ion provided by the ligand.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 3.0.
Download PDF (Advance online version)
(957Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1039/D1FD00059D
Publisher statement:This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Date accepted:05 November 2021
Date deposited:15 September 2022
Date of first online publication:05 November 2021
Date first made open access:15 September 2022

Save or Share this output

Export:
Export
Look up in GoogleScholar