Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Supporting Decision-Making for Self-Adaptive Systems: From Goal Models to Dynamic Decision Networks

Bencomo, Nelly and Belaggoun, Amel (2013) 'Supporting Decision-Making for Self-Adaptive Systems: From Goal Models to Dynamic Decision Networks.', Requirements Engineering: Foundation for Software Quality - 19th International Working Conference, REFSQ 2013, Essen, Germany, April 8-11, 2013. Proceedings Essen, Germany, 08-11 April 2013.

Abstract

[Context/Motivation] Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. [Questions/Problems] One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. [Principal ideas/results] In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs.

Item Type:Conference item (Paper)
Full text:(AM) Accepted Manuscript
Download PDF
(1027Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1007/978-3-642-37422-7
Date accepted:No date available
Date deposited:13 October 2022
Date of first online publication:2013
Date first made open access:13 October 2022

Save or Share this output

Export:
Export
Look up in GoogleScholar