We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Using Model Explanations to Guide Deep Learning Models Towards Consistent Explanations for EHR Data

Watson, M and Awwad Shekh Hasan, B and Al Moubayed, N (2022) 'Using Model Explanations to Guide Deep Learning Models Towards Consistent Explanations for EHR Data.', Scientific Reports, 12 (19899).


It has been shown that identical Deep Learning (DL) architectures will produce distinct explanations when trained with different hyperparameters that are orthogonal to the task (e.g. random seed, training set order). In domains such as healthcare and finance, where transparency and explainability is paramount, this can be a significant barrier to DL adoption. In this study we present a further analysis of explanation (in)consistency on 6 tabular datasets/tasks, with a focus on Electronic Health Records data. We propose a novel deep learning ensemble architecture that trains its sub-models to produce consistent explanations, improving explanation consistency by as much as 315% (e.g. from 0.02433 to 0.1011 on MIMIC-IV), and on average by 124% (e.g. from 0.12282 to 0.4450 on the BCW dataset). We evaluate the effectiveness of our proposed technique and discuss the implications our results have for both industrial applications of DL and explainability as well as future methodological work.

Item Type:Article
Full text:Publisher-imposed embargo
(AM) Accepted Manuscript
File format - PDF
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
Publisher Web site:
Publisher statement:This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
Date accepted:14 November 2022
Date deposited:17 November 2022
Date of first online publication:18 November 2022
Date first made open access:08 February 2023

Save or Share this output

Look up in GoogleScholar