Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Automated Detection of Substance-Use Status and Related Information from Clinical Text

Alzubi, Raid and Alzoubi, Hadeel and Katsigiannis, Stamos and West, Daune and Ramzan, Naeem (2022) 'Automated Detection of Substance-Use Status and Related Information from Clinical Text.', Sensors, 22 (24). p. 9609.

Abstract

This study aims to develop and evaluate an automated system for extracting information related to patient substance use (smoking, alcohol, and drugs) from unstructured clinical text (medical discharge records). The authors propose a four-stage system for the extraction of the substance-use status and related attributes (type, frequency, amount, quit-time, and period). The first stage uses a keyword search technique to detect sentences related to substance use and to exclude unrelated records. In the second stage, an extension of the NegEx negation detection algorithm is developed and employed for detecting the negated records. The third stage involves identifying the temporal status of the substance use by applying windowing and chunking methodologies. Finally, in the fourth stage, regular expressions, syntactic patterns, and keyword search techniques are used in order to extract the substance-use attributes. The proposed system achieves an F1-score of up to 0.99 for identifying substance-use-related records, 0.98 for detecting the negation status, and 0.94 for identifying temporal status. Moreover, F1-scores of up to 0.98, 0.98, 1.00, 0.92, and 0.98 are achieved for the extraction of the amount, frequency, type, quit-time, and period attributes, respectively. Natural Language Processing (NLP) and rule-based techniques are employed efficiently for extracting substance-use status and attributes, with the proposed system being able to detect substance-use status and attributes over both sentence-level and document-level data. Results show that the proposed system outperforms the compared state-of-the-art substance-use identification system on an unseen dataset, demonstrating its generalisability.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution 4.0.
Download PDF
(395Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.3390/s22249609
Publisher statement:© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
Date accepted:25 November 2022
Date deposited:09 December 2022
Date of first online publication:08 December 2022
Date first made open access:09 December 2022

Save or Share this output

Export:
Export
Look up in GoogleScholar