Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The reformatting advantage: photonics vs conventional optics!

Calcines, Ariadna and Harris, Robert J. and Haynes, Roger and Haynes, Dionne (2018) 'The reformatting advantage: photonics vs conventional optics!', in Proceedings Volume 10706, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III. .

Abstract

In recent decades, spectroscopic capabilities have been significantly enhanced by new technological developments, in particular spatial reformatting. Spatial reformatting allows multiple functionalities: the observation of a larger area of sky, obtaining the spectra of all spatial elements under the same atmospheric conditions; modification of the shape and size of the field of view; focal-ratio conversion for the optimized coupling between the telescope and the spectrograph; increase in the spatial and spectral resolving power; the observation of multiple objects; homogeneity in the illumination; scrambling of spatial and/or phase induced structure with the instrument, thus improving the system stability; relocation of the exit pupil, especially important for telecentric systems. The impact of reformatting and the breadth of science cases is so great that many alternative methods and technologies have been proposed: image slicers using refractive or reflective solutions; optical fibers with different core sizes and geometries; microlenses used in isolation or combined with fibers and more recently, photonic devices such as Photonic lanterns to produce modal decomposition. In this paper, a comparison between all currently available options is presented, with a detailed analysis of their advantages and limitations and a proposal for a new reformatter combining slicers and photonic devices. This proposal presents the advantages of the other alternatives and additionally offers: minimization of focal-ratio degradation; produces image and modal decomposition; improves the throughput along the spectral range, increases the spectral resolving power and adds the functionality of scrambling. All of these advantages are combined in a system where photonic and astronomical instrumentation capabilities are joined in an innovative solution with many applications, like for example, the Extremely Large Telescope.

Item Type:Book chapter
Full text:(VoR) Version of Record
Download PDF
(687Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1117/12.2312110
Publisher statement:Copyright (2018) Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Date accepted:No date available
Date deposited:17 January 2023
Date of first online publication:10 July 2018
Date first made open access:17 January 2023

Save or Share this output

Export:
Export
Look up in GoogleScholar