We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Breaking the hierarchy of galaxy formation.

Bower, R. G. and Benson, A. J. and Malbon, R. K. and Helly, J. C. and Frenk, C. S. and Baugh, C. M. and Cole, Shaun and Lacey, Cedric G. (2006) 'Breaking the hierarchy of galaxy formation.', Monthly Notices of the Royal Astronomical Society., 370 (2). pp. 645-655.


Recent observations of the distant Universe suggest that much of the stellar mass of bright galaxies was already in place at z> 1. This presents a challenge for models of galaxy formation because massive haloes are assembled late in the hierarchical clustering process intrinsic to the cold dark matter (CDM) cosmology. In this paper, we discuss a new implementation of the Durham semi-analytic model of galaxy formation in which feedback due to active galactic nuclei (AGN) is assumed to quench cooling flows in massive haloes. This mechanism naturally creates a break in the local galaxy luminosity function at bright magnitudes. The model is implemented within the Millennium N-body simulation. The accurate dark matter merger trees and large number of realizations of the galaxy formation process enabled by this simulation result in highly accurate statistics. After adjusting the values of the physical parameters in the model by reference to the properties of the local galaxy population, we investigate the evolution of the K-band luminosity and galaxy stellar mass functions. We calculate the volume-averaged star formation rate density of the Universe as a function of redshift and the way in which this is apportioned amongst galaxies of different mass. The model robustly predicts a substantial population of massive galaxies out to redshift z 5 and a star formation rate density which rises at least out to z 2 in objects of all masses. Although observational data on these properties have been cited as evidence for 'antihierarchical' galaxy formation, we find that when AGN feedback is taken into account, the fundamentally hierarchical CDM model provides a very good match to these observations.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been published in the Monthly Notices of the Royal Astronomical Society © 2006 The Authors. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:20 November 2013
Date of first online publication:August 2006
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar