We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Collapse of single stable states via a fractal attraction basin : analysis of a representative metabolic network

Liu, J. L. and Crawford, J. W. and Leontiou, K. I. (2005) 'Collapse of single stable states via a fractal attraction basin : analysis of a representative metabolic network.', Proceedings of the Royal Society A : mathematical, physical and engineering sciences., 461 (2060). pp. 2327-2338.


The impact of external forcing on an enzymatic reaction system with a single finite stable state is investigated. External forcing impacts on the system in two distinct ways: firstly, the reaction system undergoes a series of discontinuous changes in dynamical state. Secondly, a critical level of forcing exists, beyond which all finite states become unstable. It is shown that the results stem from the conditions for global stability of the system. Competition between the attractor for stable states and the unbounded states leads to a loss of integrity and the fractal fragmentation of the attraction basin for the finite state. The consequences of a fractal basin in this context are profound. Initial states which are infinitesimally close diverge to a finite and an unbounded state where only the finite state is consistent with biological functionality. Furthermore, above a critical forcing amplitude, the system does not converge to a finite state from any initial state, implying that there is no configuration of metabolite concentrations that is consistent with sustained evolution of the system. These results point to opportunities for constraining uncertainty in cell networks where nonlinear saturating kinetics form an important component.

Item Type:Article
Keywords:Metabolic network; Stability, Fractal boundary, Nonlinear dynamics, Forcing, Biochemical system, Sufficient condition, Uncertain dynamics, Coordination, Boundaries, Inhibition, Activation.
Full text:Full text not available from this repository.
Publisher Web site:
Date accepted:No date available
Date deposited:No date available
Date of first online publication:August 2005
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar