We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Hard constraint satisfaction problems have hard gaps at location 1.

Jonsson, P. and Krokhin, A. and Kuivinen, F. (2009) 'Hard constraint satisfaction problems have hard gaps at location 1.', Theoretical computer science., 410 (38-40). pp. 3856-3874.


An instance of the maximum constraint satisfaction problem (Max CSP) is a finite collection of constraints on a set of variables, and the goal is to assign values to the variables that maximises the number of satisfied constraints. Max CSP captures many well-known problems (such as Maxk-SAT and Max Cut) and is consequently NP-hard. Thus, it is natural to study how restrictions on the allowed constraint types (or constraint language) affect the complexity and approximability of Max CSP. The PCP theorem is equivalent to the existence of a constraint language for which Max CSP has a hard gap at location 1; i.e. it is NP-hard to distinguish between satisfiable instances and instances where at most some constant fraction of the constraints are satisfiable. All constraint languages, for which the CSP problem (i.e., the problem of deciding whether all constraints can be satisfied) is currently known to be NP-hard, have a certain algebraic property. We prove that any constraint language with this algebraic property makes Max CSP have a hard gap at location 1 which, in particular, implies that such problems cannot have a PTAS unless P=NP. We then apply this result to Max CSP restricted to a single constraint type; this class of problems contains, for instance, Max Cut and Max DiCut. Assuming P≠NP, we show that such problems do not admit PTAS except in some trivial cases. Our results hold even if the number of occurrences of each variable is bounded by a constant. Finally, we give some applications of our results.

Item Type:Article
Keywords:Constraint satisfaction, Optimisation, Approximability, Universal algebra, Computational complexity, Dichotomy.
Full text:Full text not available from this repository.
Publisher Web site:
Date accepted:No date available
Date deposited:No date available
Date of first online publication:September 2009
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar