
Further information on publisher’s website:
http://dx.doi.org/10.1287/moor.1090.0405

© 2009 INFORMS

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in DRO
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full DRO policy for further details.
On the Core and f-Nucleolus of Flow Games

Walter Kern
Department of Applied Mathematics, University of Twente, NL-7500 AE Enschede, The Netherlands, w.kern@math.utwente.nl, http://wwwhome.math.utwente.nl/~kernw

Daniël Paulusma
Department of Computer Science, Durham University, Science Laboratories, Durham DH1 3LE, United Kingdom, daniel.paulusma@durham.ac.uk, http://www.dur.ac.uk/daniel.paulusma

Using the ellipsoid method, both Deng et al. [Deng, X.; Q. Fang, X. Sun. 2006. Finding nucleolus of flow game. Proc. 17th ACM-SIAM Sympos. Discrete Algorithms. ACM Press, New York, 124–131] and Potters et al. [Potters, J., H. Reijnierse, A. Biswas. 2006. The nucleolus of balanced simple flow networks. Games Econ. Behav. 54 205–225] show that the nucleolus of simple flow games (where all edge capacities are equal to one) can be computed in polynomial time. Our main result is a combinatorial method based on eliminating redundant s–t path constraints such that only a polynomial number of constraints remain. This leads to efficient algorithms for computing the core, nucleolus, and nucleon of simple flow games. Deng et al. also prove that computing the nucleolus for (general) flow games is NP-hard. We generalize this by proving that computing the f-nucleolus of flow games is NP-hard for all priority functions f that satisfy $f(A) > 0$ for all coalitions A with $v(A) > 0$ (so, including the priority functions corresponding to the nucleolus, nucleon, and per-capita nucleolus).

Key words: flow game; computational complexity; solution concept
OR/MS subject classification: Primary: games/group decisions, secondary: cooperative.

History: Received May 14, 2008; revised October 30, 2008. Published online in Articles in Advance October 2, 2009.

1. Introduction. A cooperative game is given by a set E of players and a characteristic function $v : 2^E \to \mathbb{R}$ with $v(\emptyset) = 0$. A coalition is any subset $A \subseteq E$. We refer to $v(A)$ as the worth of coalition $A \subseteq E$, interpreted as the gain that the members of A can achieve by “cooperating” with each other. The worth $v(E)$ is also called the total worth of the game. The v-worths of many cooperative games are derived from solving an underlying discrete optimization problem (cf. Bilbao [1]). For example, in a matching game, the underlying discrete structure is an undirected graph G with edge weights $w \in \mathbb{R}_+^E$. If this graph is bipartite we get an assignment game (Shapley and Shubik [28]). The players are represented by the vertices of G, and the worth $v(A)$ of a coalition A is defined as the size of a maximum weight matching in the subgraph of G induced by A. Another example is the class of min-cost spanning tree games (Bird [2]) defined on an undirected complete graph G with supply node s and edge weighting w. The players are the vertices of G without s, and the (cost) worth $v(A)$ of a coalition A is equal to the weight of a minimum spanning tree in the subgraph of G induced by $A \cup \{s\}$.

In cooperative game theory it is often assumed that the grand coalition E is formed. The central problem is then to allocate the total worth $v(E)$ to the individual players $i \in E$ in a way that might be called “fair” (in a certain sense). An allocation is a vector $x \in \mathbb{R}_+^E$ with $x(E) = v(E)$. Here, we adopt the standard notation $x(A) = \sum_{i \in A} x_i$. A solution concept \mathcal{F} for a class of cooperative games Γ is a function that maps each game $(E, v) \in \Gamma$ to a set $\mathcal{F}(v)$ of allocations for (E, v). These allocations are called \mathcal{F}-allocations and we say that \mathcal{F} prescribes them to (E, v).

The choice for a specific solution concept depends on the notion of “fairness” that has been specified within the decision model. Well-known solution concepts in the literature are the core (Gillies [14]), which might be empty, and the nucleolus, which consists of a unique allocation (Schmeidler [26]). See Owen [23] for a survey. Multiplicative variants of the nucleolus are the nucleon (Faigle et al. [8]) (also called the proportional nucleolus (Young et al. [34]), and the per-capita nucleolus (Grotte [17], Young [33]) (also called the weak nucleolus (Shapley [27])). Both variants can be more natural to model situations in which taxation is imposed proportionally to the worth (e.g., interest or sales tax). Later, we give precise definitions of these concepts and discuss them in the more general framework of f-nucleoli, where $f : 2^E \to \mathbb{R}^+$ is a so-called priority function that has been introduced in Wallmeier [31]. Priority functions are closely related to the concept of taxation functions (Tijs and Driessen [30], Woeginger [32] and have been studied in Faigle et al. [6], Paulusma [24] as well.

Two natural questions regarding the complexity of a certain solution concept $\mathcal{F}(v)$ are determining the computational complexity of

1. testing membership in $\mathcal{F}(v)$, i.e., checking whether a given allocation is a member of $\mathcal{F}(v)$; and
2. computing an allocation in $\mathcal{F}(v)$.
To answer these questions, one takes the size of the underlying discrete structure as input size because this is more natural than taking the $2^{|V|}$ v-worths themselves. Both positive and negative results exist regarding these two questions. As an illustration, consider the earlier mentioned matching games and min-cost spanning tree games. In Faigle et al. [7] it has been shown that testing membership in the core of min-cost spanning tree games is NP-hard, while this can be done in polynomial time for matching games (Faigle et al. [8]). For assignment games (Solymosi and Raghavan [29]) and simple matching games (i.e., with unit edge weights) (Kern and Paulusma [21]), the nucleolus can be computed in polynomial time. For (general) matching games, an allocation in the nucleon (Faigle et al. [8]) can be computed in polynomial time. For min-cost spanning tree games, computing the nucleolus (Faigle et al. [9]) and computing an allocation in the nucleon (Faigle et al. [6]) are NP-hard problems. Note that in these games the v-worths themselves can be computed efficiently.

This paper studies flow games introduced by Kalai and Zemel [19] to model profit allocation of integrated production systems with alternative production routes. The underlying structure of a flow game (E, v) is a (flow) network, i.e., a directed graph $G = (V, E)$ with source $s \in V$, sink $t \in V$ and positive edge capacities $c \in \mathbb{R}^E$. Note that we allow multiple edges. Each player in this game owns exactly one edge. Players cooperate with each other to allow a flow going from s to t. So, players are represented by (directed) edges and the v-worths are given by

$$v(A) := \text{maximum flow in } (V, A), \quad A \subseteq E.$$

Note that v-worths can be efficiently computed (see, e.g., Edmonds and Karp [5]) and that $v(A) = 0$ for a coalition A that does not contain both s and t. Kalai and Zemel [20] show that every flow game has a nonempty core and that it is a trivial task to compute a core allocation. However, Fang et al. [11] show that testing membership in the core of a flow game is NP-hard. Deng et al. [4] show that computing the nucleolus of a flow game is NP-hard. On the positive side, Granot and Granot [15] show that the nucleolus of a flow game can be computed in polynomial time if the underlying flow network is an augmented tree.

A simple flow game is a flow game on a simple network, i.e., with unit capacities ($c_e = 1$ for all $e \in E$). Granot and Granot [15] obtain a parametric description of the core of a simple flow game and use this result to obtain an easier description of its nucleolus. However, their result does not lead to a polynomial time algorithm for computing the nucleolus. The main obstacle is that their approach requires checking for pairs of edges a, b if there exists an s–t path that goes through a but not through b. Here, a v_a–v_b path in a network $G = (V, E)$ is a directed path from $v_a \in V$ to $v_b \in V$, i.e., a sequence $v_{i_0}v_{i_1}\ldots v_{i_l}$ of different vertices such that $(v_{i_{t-1}}, v_{i_t})$ is a (directed) edge in G for $i = 1, \ldots, l$. By writing $a = (x, y)$, the above problem is equivalent to checking if there exist an s–x path and a y–t path in $G' = (V, E \setminus \{b\})$ that are vertex-disjoint. The problem of deciding if such paths exist is NP-complete for directed graphs (Fortune et al. [12]).

Fourteen years later, both Deng et al. [4] and Potters et al. [25] independently show that the nucleolus of a simple flow game can be computed in polynomial time. Both papers use the ellipsoid method, as opposed to the approach in Granot and Granot [15] that is based on removing redundant s–t path constraints in the sequence of linear programs that determine the nucleolus (we will explain this sequence of linear programs later). Potters et al. [25] also make use of a polynomial description of the core in terms of so-called potential functions defined on (a modified) network.

Other properties of simple flow games, such as core stability and core largeness, are studied in Fang et al. [10], while Granot et al. [16] studies the reactive bargaining set.

Our results. We continue the study on flow games. First we focus on simple flow games in §2. We attack these games by a similar approach as followed in Granot and Granot [15]: in the linear program descriptions of the solution concepts under consideration we try to find as many redundant s–t path constraints as possible. However, our analysis is very different than the one performed in Granot and Granot [15] because in the end we are left with a polynomial number of constraints (not necessarily corresponding to s–t paths) describing the following three solution concepts:

- In §2.1 we will exhibit a new, polynomial size description of the core of a simple flow game.
- In §2.2 we show that the nucleolus of a simple flow game can be computed in polynomial time.
- In §2.3 we show that the nucleon of a simple flow game can be computed in polynomial time.

We would like to emphasize that our method does not rely on the ellipsoid method, as opposed to the “dual” approach in Deng et al. [4], Potters et al. [25] for computing the nucleolus in polynomial time, and (hopefully) provides some additional insight into the structure of the problem.

In §3 we study the f-nucleolus of a (general) flow game. We give a relatively short proof that shows that computing an allocation in the f-nucleolus is NP-hard for all priority functions f with $f(A) > 0$ if $v(A) > 0$. As for
min-cost spanning tree games, this is known only for a smaller subset of priority functions (Faigle et al. [6]); this result was not expected beforehand. The nucleolus, per-capita nucleolus and nucleon all correspond to a priority function satisfying this property. Hence we immediately obtain the NP-hardness results for these three concepts.

Section 4 contains the conclusions. There we also mention some open problems.

2. Simple flow games. Consider a simple network \((V, E)\). Throughout this section we use the following terminology. For two nonempty vertex-disjoint sets \(S, T \subseteq V\) with \(S \cup T = V\), \(s \in S\), and \(t \in T\), we write \([S : T]\) for the cut \(\{(i, j) \in E \mid i \in S, j \in T\}\) and \([T : S]\) for \(\{(j, i) \in E \mid i \in S, j \in T\}\). A min cut is a cut with the smallest number of edges. By the well-known max-flow min-cut theorem (cf. Cormen et al. [3]), \(v(E)\) is equal to the number of edges in a min cut.

A min cut edge is an edge \(e \in E\) that is contained in some min cut \([S : T] \subseteq E\). A reverse edge is an edge \(e \in [T : S]\) for some min cut \([S : T] \subseteq E\). We let \(M\) denote the set of min cut edges and we let \(R\) denote the set of reverse edges. Note that \(M \cap R = \emptyset\) (we make this more explicit in Observation 1). In general, there might exist edges that are neither reverse nor min cut edges. We let \(D := E \backslash (M \cup R)\) denote the set of dummy edges. See Figure 1 for two examples. In this figure the letters \(D, M, R\) denote the set to which the edges in the example networks belong. Both \(R\) and \(M\) (and consequently \(D\)) can be computed in polynomial time as follows. We say that we identify two vertices \(i, j\) if we replace \(i, j\) by a new vertex adjacent to all edges formerly adjacent to \(i\) or \(j\). Then, an edge \(e = (i, j)\) is in \(M\) if and only if identifying \(i\) with \(s\) and \(j\) with \(t\) (still) yields a min cut value of \(v(E)\). Similarly, an edge \(e = (i, j)\) is in \(R\) if and only if identifying \(i\) with \(t\) and \(j\) with \(s\) yields a min cut value of \(v(E)\).

Let \(\mathcal{P} \subseteq 2^E\) denote the family of \(s\)-\(t\) paths. Recall that these are directed paths starting in \(s\) and ending in \(t\). We define a max flow set in a simple network as a set of \(k\) pairwise edge-disjoint paths \(P_1, \ldots, P_k\) in \(\mathcal{P}\) that form a max flow of worth \(k = v(E)\).

Observation 1. Let \(\{P_1, \ldots, P_k\}\) be a max flow set in a simple network \((V, E)\). Then \(M \subseteq P_1 \cup \cdots \cup P_k\) and \((P_1 \cup \cdots \cup P_k) \cap R = \emptyset\).

Proof. Let \(\{P_1, \ldots, P_k\}\) be a max flow set in \((V, E)\). Every \(P_i\) \((i = 1, \ldots, k)\) passes through every \(k\) cut of \(G\). Furthermore, every cut contains \(k\) edges. These two facts together imply our claim. \(\Box\)

From now on we fix some max flow set \(\{P_1, \ldots, P_k\}\). Note that besides \(s, t\) these paths may have other common vertices. An \(i, j\) path \(P\) is denoted by \(P_{ij}\) and an \(i, j\) subpath of a path \(P_i\) is denoted by \(P_{ij}^k\). A subpath \(P' \subseteq P_i \cap M\) joining \(i \in V(M)\) to \(j \in V(M)\) is denoted by \(M_{ij}^k\). A path \(P' \subseteq D \cup R\) joining \(i \in V\) to \(j \in V\) is denoted by \(Q_{ij}\). However, we write \(R_{ij}\) if we want to indicate that \(Q_{ij} \cap R = \emptyset\) (so a path \(R_{ij}\) might contain edges from \(D\)). Note that this is exactly the case when \(i\) and \(j\) are separated by a min cut. Otherwise, all edges of any path \(Q_{ij}\) belong to \(D\), and if we want to indicate this we denote \(Q_{ij}\) by \(D_{ij}\). We can then decompose an arbitrary \(P \in \mathcal{P}\) as

\[P = D_{1,1} \uplus M_{1,2}^{i,j} \uplus Q_{1,2}^{i,j} \uplus M_{2,3}^{i,j} \uplus \cdots \uplus Q_{k-1,2}^{i,j} \uplus M_{k,1}^{i,j} \uplus D^{k,1}. \]

We observe that \(P\) cannot pass any reverse edges before passing any min cut, so \(P\) indeed starts and ends with (possibly empty) \(D^{1,1}\), respectively, \(D^{k,1}\).

We now define two polynomially bounded sets \(\mathcal{P}_0 \subseteq \mathcal{P}\) and \(\mathcal{P}_1 \subset 2^E\) that play a crucial role in all our proofs in this section. Whenever \((i, j) \in V(M)^2\) are joined by a path in \(D \cup R\), we fix such a path \(\overline{Q}_{ij}\). If \(\overline{Q}_{ij} \cap R \neq \emptyset\), then we write \(\overline{R}_{ij}\). In the other case \(\overline{Q}_{ij} \subseteq D\), and we denote \(\overline{Q}_{ij}\) by \(\overline{D}_{ij}\). Then \(\mathcal{P}_0\) consists of all paths of the form

\[P = P_{ij}^1 \uplus \overline{D}_{ij} \uplus P_{ij}^m. \]

![Figure 1. Two examples of simple networks.](image-url)
Here, we allow \(i = j \). Then, as \(\tilde{D}^i \) is empty for all \(i \in V \), we ensure \(P_1, \ldots, P_k \in \mathcal{P}_0 \). The set \(\mathcal{P}_1 \) consists of all \(s-t \) walks of the form

\[
P = P_i^{j1} \cup \tilde{R}^j \cup P_m^{jt}.
\]

Note that it is indeed possible that a coalition \(P \in \mathcal{P}_1 \) is not a path coalition because we might visit a vertex or edge twice by going from \(s \) to \(t \) along \(P \), e.g., when \(l = m \). We also note that \(\tilde{R}^i \) does not exist.

Observation 2. Both \(\mathcal{P}_0 \) and \(\mathcal{P}_1 \) have polynomial size and can be computed in polynomial time.

Proof. Clearly, \(|\mathcal{P}_0| = |\mathcal{P}_1| = O(|V|^3k^2) = O(|V|^3|E|^2) \). The second claim immediately follows from the fact that we can compute \(D, R \), and a max flow set in polynomial time. \(\square \)

The following lemma is crucial for every solution concept in this section. Note that the coalitions \(\tilde{P}_\rho \) defined in this lemma are in \(\mathcal{P}_0 \cup \mathcal{P}_1 \).

Lemma 2.1. Let \(P \in \mathcal{P} \) be decomposed as in (1) and let

\[
\tilde{P}_\rho = P_i^{j1} \tilde{Q}_{j^1r^1} \tilde{P}_{l^1t^1}^{j^1t^1} \quad \text{for } \rho = 1, \ldots, q - 1.
\]

Let \(x \equiv 0 \) on \(D \cup R \) for some \(x \in \mathbb{R}^E \). Then the following holds:

- If \(q = 1 \), then \(x(P) = x(P_i^j) \).
- If \(q = 2 \), then \(x(P) = x(P_i^j) \).
- If \(q = 3 \), then \(x(P) = x(P_i^j) + \sum_{\rho=1}^{q-1} (x(\tilde{P}_\rho) - x(P_i^j)) \).

Proof. As \(x \equiv 0 \) on \(D \cup R \) we may without loss of generality assume \(D^i = P_i^{j1} \) and \(D^j = P_i^{j1} \). For the same reason we may without loss of generality assume that \(\tilde{Q}_{j^1r^1} \) equals \(\tilde{Q}_{j^1r^1} \).

If \(q = 1 \), we then obtain \(x(P) = x(D^i) + x(M_1^{j1}) + x(D^j) = x(P_i^j) + x(P_i^{j1}) = x(P_i^j) \).

If \(q = 2 \), we obtain \(x(P) = x(D^i) + x(M_2^{j1}) + x(Q_{j^1}) + x(D^j) = x(P_i^j) + x(\tilde{Q}_{j^1}) + x(P_i^{j1}) = x(P_i^j) \).

If \(q = 3 \), we identify each path \(P \) with its incidence vector in \(\mathbb{Z}_{+}^{E} \). Then we can write \(P + P_i^j + \cdots + P_{q-1} = \tilde{P}_1 + \cdots + \tilde{P}_{q-1} \), and the claim follows. \(\square \)

2.1. The core of simple flow games. The core of a game \((E, v)\), denoted by core\((v)\), is the set of allocations that are fair in the sense that every coalition \(A \) gets at least its worth \(v(A) \) (assuming that the \(v \)-worths represent profits):

\[
\text{core}(v): \quad x(A) \geq v(A) \quad A \in 2^E \setminus \{\emptyset, E\},
\]

\[
x(E) = v(E).
\]

We first state two elementary results known in the literature.

Proposition 2.1 (Kalai and Zemel [20]). Let \((E, v)\) be a simple flow game, then

\[
\text{core}(v): \quad x(P) \geq 1 \quad P \in \mathcal{P},
\]

\[
x_e \geq 0 \quad e \in E,
\]

\[
x(E) = v(E).
\]

Theorem 2.1 (Kalai and Zemel [20]). For simple flow games, core\((v)\) is the convex hull of the incidence vectors of min cuts.

By Observation 2 the next theorem gives the desired core result. We formulate it a bit stronger because this is useful for proving the polynomial time results for the nucleolus and nucleon in §§2.2 and 2.3, respectively.

Theorem 2.2. Let \((E, v)\) be a simple flow game with max flow set \(P_1, \ldots, P_k \), then

\[
\text{core}(v): \quad x(P) \geq 1 \quad P \in \mathcal{P}_1,
\]

\[
x(P) = 1 \quad P \in \mathcal{P}_0,
\]

\[
x_e \geq 0 \quad e \in M,
\]

\[
x_e = 0 \quad e \in D \cup R.
\]

All inequalities can be satisfied strictly.
2.2. The nucleolus of simple flow games. Given an allocation $x \in \mathbb{R}^E$ for some game (E, v), we define the excess of a nonempty coalition $A \subseteq E$ as $e(A, x) := x(A) - v(A)$. We first order all excesses $e(A, x)$ into a nondecreasing sequence to obtain the excess vector $\theta(x) \in \mathbb{R}^{2^{E\setminus \emptyset} - 2}$. The nucleolus of (E, v) is then defined as the set of allocations that lexicographically maximize $\theta(x)$ over all imputations, i.e., over all allocations $x \in \mathbb{R}^E$ with $x_e \geq v(\{e\})$ for all $e \in E$. Note that the nucleolus is not defined if the set of imputations is empty. Otherwise, due to a result by Schneider [26], the nucleolus consists of exactly one allocation.

We use the following alternative procedure (cf. Maschler et al. [22]) for computing the nucleolus of games with a nonempty core such as flow games. Let (E, v) be a game with $\text{core}(v) \neq \emptyset$. Then we might seek for an allocation $x \in \mathbb{R}^E$ satisfying all coalitions (core constraints) as much as possible by solving

$$
(LP_1) \quad e_1 := \max \varepsilon \quad \begin{align*}
x(A) &\geq v(A) + \varepsilon \quad A \in 2^E \setminus \emptyset, \\
x(E) &= v(E).
\end{align*}
$$

Note that $e_1 \geq 0$, as $\text{core}(v)$ is nonempty. The set of allocations $x \in \mathbb{R}^E$ for which (x, e_1) is an optimum solution of (LP_1) is known as the least core of (E, v). Note that the least core consists of those allocations that maximize the smallest excess. This idea may be further pursued. Let $\mathcal{A}_0 := \{\emptyset, E\}$ and let $\mathcal{A}_i \subseteq 2^E \setminus \mathcal{A}_0$ denote the set of coalitions A that get tight in (LP_1) in the sense that $x(A) = v(A) + e_1$ holds for every optimal solution (x, e_1) of (LP_1). For $\mathcal{A} \subseteq 2^E$, let $\langle \mathcal{A} \rangle \subseteq 2^E$ consist of all coalitions whose incidence vectors are linearly generated by the incidence vectors of coalitions in \mathcal{A}. So, for example, any $A \in \langle \mathcal{A}_0 \cup \mathcal{A}_1 \rangle$ has a fixed value $x(A)$ for each x in the least core of v. We may thus seek to further increase $x(A)$ for $A \in 2^E \setminus \langle \mathcal{A}_0 \cup \mathcal{A}_1 \rangle$, etc., leading to a sequence of linear programs

$$
(LP_r) \quad e_r := \max \varepsilon \quad \begin{align*}
x(A) &\geq v(A) + \varepsilon \quad A \in 2^E \setminus \langle \mathcal{A}_0 \cup \cdots \cup \mathcal{A}_{r-1} \rangle, \\
x(A) &= v(A) + e_i \quad A \in \mathcal{A}_i \ (i = 0, \ldots, r-1),
\end{align*}
$$

with $e_0 := 0$ and $\mathcal{A}_r \subseteq 2^E \setminus \langle \mathcal{A}_0 \cup \cdots \cup \mathcal{A}_{r-1} \rangle$ being recursively defined as the set of coalitions A that get tight in (LP_r) in the sense that $x(A) = v(A) + e_i$ holds for every optimal solution (x, e_i) of (LP_r). We say that (LP_r) fixes $A \subseteq E$ if $A \in \langle \mathcal{A}_0 \cup \cdots \cup \mathcal{A}_r \rangle \setminus \langle \mathcal{A}_0 \cup \cdots \cup \mathcal{A}_{r-1} \rangle$. Note that a coalition A can be fixed by some (LP_r) without ever getting tight.

The dimension of the feasible regions of (LP_r) decreases in each step, so we end up with a unique optimum solution $x^* = x^*(v)$, the nucleolus of (E, v), after at most $m = |E|$ iterations. The nucleolus is in general difficult to compute, due to the exponentially many constraints in each (LP_r). However, for simple flow games, this can be done in polynomial time. Our main idea is the following. We fix a max flow set $\{P_1, \ldots, P_k\}$. After exiting the case when E is an s–t path, we deduce that $e_1 = 0$ and that the set of optimal solutions for (LP_1) simply coincides with the core, i.e., $\langle \mathcal{A}_0 \cup \mathcal{A}_1 \rangle \subseteq 2^E$ consists exactly of all coalitions generated by single edges $\{e\} \subseteq D \cup R$ and paths $P \in \mathcal{P}_0$ (cf. Theorem 2.2). As $x \equiv 0$ on $D \cup R$ in linear programs (LP_r) with $r \geq 2$, we may apply Lemma 2.1. This enables one to disregard all coalitions not in $D \cup R \cup \mathcal{P}_0 \cup \mathcal{P}_1$. Because the proof for the nucleolus in §2.3 goes along the same lines and the result for the nucleon is new, we leave out the proof details of Theorem 2.3, which has been shown in Deng et al. [4] and Potters et al. [25] as well.

Theorem 2.3. The nucleolus of a simple flow game can be computed in polynomial time.
2.3. The nucleon of simple flow games. A multiplicative variant of the nucleolus, the so-called nucleon, has been introduced in Faigle et al. [8]. Assuming \(v \geq 0 \) (and \(v \)-worths representing profits) this paper proposes to solve

\[
(\bar{L}P_r) \quad \varepsilon_r := \max \varepsilon \\
\begin{align*}
x(A) &\geq (1+\varepsilon)v(A) \quad A \in 2^E \setminus (\emptyset, E), \\
x(A) &= (1+\varepsilon)v(A) \quad A \in \mathcal{A}_i \quad (i = 0, \ldots, r-1)
\end{align*}
\]

(where \(\varepsilon_0 = 0 \) and \(\mathcal{A}_0 = \{\emptyset, E\} \)) for \(r = 1, 2, \ldots \) until \(v(A) = 0 \) holds for all \(A \in 2^E \setminus (\emptyset, \ldots, \mathcal{A}_{r-1}) \). Strictly speaking, the above sequence of linear programs leads to the prenucleon (because we do not restrict ourselves to imputations only). However, if we assume that the core of a game \((E, v) \) is nonempty, \(\varepsilon_i \geq 0 \) holds, and then the nucleon and prenucleon coincide. Because flow games have a nonempty core, we can indeed make this assumption.

In contrast to the nucleolus, the nucleon is not necessarily a single point. The complexity of the nucleolus and nucleon might differ for a specific class of games, but in general also the nucleon is difficult to compute, due to the exponentially many constraints in each \((\bar{L}P_r) \). However, we can efficiently compute the nucleon of a simple flow game by applying our method. To start with, we exclude the trivial exception that \(E \) is an \(s-t \) path and first observe that

\[
(\bar{L}P_1) \quad \varepsilon_1 := \max \varepsilon \\
\begin{align*}
x(A) &\geq (1+\varepsilon)v(A) \quad A \in 2^E \setminus (\emptyset, E), \\
x(E) &= v(E)
\end{align*}
\]

yields \(\varepsilon_1 = 0 \). This can be seen as follows. Theorem 2.2 implies \(\varepsilon_i \geq 0 \). Let \(\{P_1, \ldots, P_k\} \) be a max flow set and let \((x, \varepsilon_i)\) be an optimal solution for \((\bar{L}P_1) \). Then \(x \geq 0 \), and hence \(k = x(E) \geq \sum_{j=1}^k x(P_j) \geq (1+\varepsilon_i)k \), which implies \(\varepsilon_i \leq 0 \). So, the set of optimal solutions for \((\bar{L}P_1) \) simply coincides with the core, as was the case for \((LP_1) \). By Theorem 2.2, \((\emptyset, \mathcal{A}_1) \subseteq 2^E \) consists exactly of all coalitions generated by single edges \(\{e\} \subseteq D \cup R \) and paths \(P \in \mathcal{P}_0 \). Next let us turn to

\[
(\bar{L}P_2) \quad \varepsilon_2 := \max \varepsilon \\
\begin{align*}
x(A) &\geq (1+\varepsilon)v(A) \quad A \in 2^E \setminus (\emptyset, \mathcal{A}_1), \\
x(P) &= 1 \quad P \in \mathcal{P}_0, \\
x_e &= 0 \quad e \in D \cup R.
\end{align*}
\]

Which coalitions might get tight in \((\bar{L}P_2) \)? First we fix a max flow set \(\{P_1, \ldots, P_k\} \). We call \(A \subseteq E \setminus (\emptyset, \mathcal{A}_1) \) critical if \(A \) is of the form

\[
A_e = \{e\} \cup \bigcup_{h \neq m} P_h, \quad \text{with } e \in P_m \cap M,
\]

\[
A_{lm}^{\prime} = P_l^{\prime} \cup \bar{R}^{\prime} \cup P_m^{\prime} \cup \bigcup_{h \neq l, m} P_h, \quad \text{with } l \neq m.
\]

Note that a coalition of the form \(A_e \) with \(e \in P_m \cap M \) is not critical if and only if \(P_m \) consists of \(e \). Furthermore, each critical coalition of the form \(A_{lm}^{\prime} \) corresponds to exactly one coalition \(P_l^{\prime} \cup \bar{R}^{\prime} \cup P_m^{\prime} \) in \(\mathcal{P}_1 \). Hence, the number of critical coalitions is \(O(|E|) + |\mathcal{P}_1| = O(|V|^2|E|^2) \), and we can find all critical coalitions in polynomial time due to Observation 2.

We now show that for computing an allocation in the nucleon, it suffices to consider the constraints for the critical coalitions together with the single edge and path constraints (for paths in \(\mathcal{P}_0 \)).

Theorem 2.4. An allocation in the nucleon of a simple flow game can be computed in polynomial time.
Let \((E, v)\) be a simple flow game with \(v(E) = k\). If \(k = 1\), the nucleon coincides with the core (we leave the proof to the reader). Suppose \(k \geq 2\). Fix some max flow set \(\{P_1, \ldots, P_k\}\) of \((E, v)\). Note that \(v(A) = k - 1\) if \(A\) is a critical coalition. We first show that \((\mathcal{LP}_2)\) is equivalent to

\[
\begin{align*}
(\mathcal{LP}_2^*) & \quad e_2 := \max e \\
& \quad x(A) \geq (1 + \varepsilon)(k - 1) \quad A \text{ is critical,} \\
x(P) & \quad = 1 \quad P \in \mathcal{P}_0, \\
x_e & \quad = 0 \quad e \in D \cup R, \\
x_e & \quad \geq 0 \quad e \in M.
\end{align*}
\]

We prove this by showing that any feasible solution \((x, e)\) of \((\mathcal{LP}_2^*)\) is also feasible for \((\mathcal{LP}_2)\) (the reverse implication is clear). Assume \(k \geq 2\). Let \((x, e)\) be a solution of \((\mathcal{LP}_2^*)\). We need to show that \(x(A) \geq (1 + \varepsilon)v(A)\) for all \(A \in 2^E \setminus (\langle s \rangle_0 \cup \langle t \rangle_1)\).

Assume \(A \in 2^E \setminus (\langle s \rangle_0 \cup \langle t \rangle_1)\), say, \(v(A) = l\), i.e., there exist \(l\) edge-disjoint \(s\)-\(t\) paths \(\overrightarrow{P}_1, \ldots, \overrightarrow{P}_l \subseteq A\). Let \(l = k\), then \(\overrightarrow{P}_1, \ldots, \overrightarrow{P}_l\) form a max flow set. By Observation 1, we obtain \(M \subseteq \overrightarrow{P}_1 \cup \cdots \cup \overrightarrow{P}_l\) and \(M \subseteq \overrightarrow{P}_1 \cup \cdots \cup \overrightarrow{P}_l\). The latter implies \(M \subseteq A\). Because \(x \equiv 0\) on \(D \cup R\), we then find \(x(A) = x(M) = x(\bigcup_{i=1}^{l} \overrightarrow{P}_i) = k\). Then \(A \in \langle \langle s \rangle_0 \cup \langle t \rangle_1 \rangle\) holds, a contradiction. Hence, we may assume that \(l \leq k - 1\).

If \(l = 0\), there is nothing to show (as \(v(A) = l = 0\)). Hence, assume \(l \geq 1\). First, we prove a lower bound on \(x(P)\) for all \(P \in \mathcal{P}_1\). Recall that \(P\) makes part of a critical coalition: Assume \(P = \overrightarrow{P}_1 \cup \overrightarrow{R}_1 \cup \overrightarrow{P}_m\), then

\[
x(A^0) = x\left(\overrightarrow{P} \cup \bigcup_{h \neq m, l} \overrightarrow{P}_h\right) = x(\overrightarrow{P}) + k - 2 \geq (1 + \varepsilon)(k - 1).
\]

So we find that \(x(\overrightarrow{P}) \geq 1 + \varepsilon(k - 1)\) for all \(\overrightarrow{P} \in \mathcal{P}_1\). We use this information to deduce a lower bound on \(x(P)\) for each \(P \in \{\overrightarrow{P}_1, \ldots, \overrightarrow{P}_l\}\). We can decompose such a \(P\) as in (1) and apply Lemma 2.1. If \(q = 1\), we find

\[
x(P) = 1.
\]

If \(q \geq 2\), we find

\[
x(P) = \begin{cases}
1 & \text{if and only if all } \overrightarrow{P}_h \in \mathcal{P}_0, \\
1 + \varepsilon(k - 1) & \text{if exactly one } \overrightarrow{P}_h \in \mathcal{P}_1, \\
1 + 2\varepsilon(k - 1) & \text{else.}
\end{cases}
\]

First assume none of \(\overrightarrow{P}_1, \ldots, \overrightarrow{P}_l\) intersect \(R\). Then, by (2) and (3), \(x(\overrightarrow{P}_i) = 1\) and \(\overrightarrow{P}_i \in \langle \langle s \rangle_0 \cup \langle t \rangle_1 \rangle\) for all \(i\). Hence, \(A \setminus (\overrightarrow{P}_1 \cup \cdots \cup \overrightarrow{P}_l)\) must contain an edge \(e \in M\) (as \(A \notin \langle \langle s \rangle_0 \cup \langle t \rangle_1 \rangle\) and \(x \equiv 0\) on \(D \cup R\)). Because \(v(A) = l\), we find that \(e\) is not an edge from \(s\) to \(t\). Then \(A_e\) is a critical coalition. Because \(x\) satisfies all critical constraints, we have

\[
x_e \geq (1 + \varepsilon)(k - 1),
\]

so \(x_e \geq \varepsilon(k - 1) > 0\) (as a matter of fact, we proved this way that \(x > 0\) on \(M\)) and, as required,

\[
x(A) \geq x_e + x(\overrightarrow{P}_1) + \cdots + x(\overrightarrow{P}_l) \geq \varepsilon(k - 1) + l \geq (1 + \varepsilon)l.
\]

Second, assume that at least one of the paths, say \(\overrightarrow{P}_i\), intersects \(R\). By (3), we obtain \(x(\overrightarrow{P}_i) \geq 1 + \varepsilon(k - 1)\) and \(x(\overrightarrow{P}_j) \geq 1\) for \(i = 2, \ldots, l\). Then, as required,

\[
x(A) \geq x(\overrightarrow{P}_1) + x(\overrightarrow{P}_2) + \cdots + x(\overrightarrow{P}_l) \geq l + \varepsilon(k - 1) \geq (1 + \varepsilon)l.
\]

The above actually shows more than what is claimed. Indeed, we see that the coalition \(A\) can get tight only if \(l = k - 1\). Furthermore, in the first case (i.e., when \((\overrightarrow{P}_1 \cup \cdots \cup \overrightarrow{P}_{k-1}) \cap R = \emptyset\) or, the set \(A \setminus (\overrightarrow{P}_1 \cup \cdots \cup \overrightarrow{P}_{k-1})\) may contain only a unique edge \(e \in M\) (otherwise, \(x > 0\) on \(M\)) would imply \(x(A) \geq (1 + \varepsilon)(k - 1)\). So \(A\) gets tight (and fixed) exactly when \(A_e\) gets tight, either in \((\mathcal{LP}_2)\) or in subsequent \((\mathcal{LP}_r)\) for \(r \geq 3\). A similar argument applies when \((\overrightarrow{P}_1 \cup \cdots \cup \overrightarrow{P}_{k-1}) \cap R \neq \emptyset\). In this case, \(A\) can get tight only if there is exactly one path \(P \in \{\overrightarrow{P}_1, \ldots, \overrightarrow{P}_k\}\) that intersects \(R\) and, in addition, there is exactly one \(\overrightarrow{P}_i\) in (3) with \(\overrightarrow{P}_i \in \mathcal{P}_1\). Finally, \(A\) may
not contain any edge $e \in M$ outside $\bar{P}_1 \cup \cdots \cup \bar{P}_{k-1}$. So, again, A can get tight only when the corresponding critical coalition A_{jm}^0 gets tight (in some $(\bar{\text{LP}}_r)$, $r \geq 2$). But when A_{jm}^0 gets tight in, say $(\bar{\text{LP}}_r)$, then \bar{P}_r gets fixed to $1 + e_c(k - 1)$, fixing A to $x(A) = (1 + e_c)k - 1$.

Summarizing, our arguments show that we may completely disregard all constraints $x(A) \geq (1 + e)v(A)$ in (LP_r), $r \geq 2$, for which A is noncritical. This amounts to saying that each (LP_r) has only polynomially many constraints and, hence, is efficiently solvable.

3. The f-nucleolus of a flow game. For a game (E, v) we define a priority function as a mapping $f: 2^E \to \mathbb{R}^+$ to express a priority $f(A)$ given to a coalition A (cf. Faigle et al. [6]). Assuming $v \geq 0$ (and v-worths representing profits), we solve the following sequence of linear programs:

\begin{align*}
\text{(LP}_r') \quad & e_r := \max \varepsilon \quad \\
& x(A) \geq v(A) + \varepsilon f(A) \quad A \in 2^E \setminus \{\emptyset, A\} \\
& x(A) = v(A) + \varepsilon f(A) \quad A \in \delta_i \quad (i = 0, \ldots, r - 1)
\end{align*}

(where $e_0 = 0$ and $\delta_0 = \{\emptyset, E\}$) for $r = 1, 2, \ldots$ until $f(A) = 0$ holds for all $A \in 2^E \setminus \{\emptyset, A\}$. We then obtain the f-nucleolus of (E, v) if core$(v) \neq \emptyset$ (because, otherwise, by definition we have to add in each (LP_r') the extra condition that x is an imputation). Note that the f-nucleolus is not necessarily a single point. We obtain the nucleolus if we choose $f \equiv 1$, the nucleon if $f = v$, and the per-capita nucleolus if $f(A) = |A|$ for all $A \subseteq E$. Observe that these three priority functions have the property that $f(A) > 0$ whenever $v(A) > 0$. This is a natural condition, and we call such a priority function suitable.

Below we present the main result of this section. The gadget used in the NP-hardness reduction has been inspired by the gadget Deng et al. [4] used for proving NP-hardness of computing the nucleolus, but the arguments we use are completely different.

Theorem 3.1. For any suitable priority function f, computing an allocation in the f-nucleolus is NP-hard for the class of flow games.

Proof. We use reduction from the NP-complete problem **Exact 3-Cover** (Garey and Johnson [13]). So, we are given an undirected bipartite graph I defined by bipartite classes U, W with $|U| = m > q$ and $|W| = 3q$ for some integer q such that each vertex $u \in U$ is adjacent to exactly three vertices in W. The problem is to decide if U contains an exact cover, i.e., a set $C \subseteq U$ with $|C| = q$ such that each $w \in W$ is adjacent to some $u \in C$. We may assume $|N(w)| \geq 2$ for all $w \in W$ (cf. Faigle et al. [6]).

From I we construct a flow network $G = (V, E)$ as follows (cf. Figure 2). We add four new vertices: a source s, a sink t and two other vertices x, y. We let $E = E_0 \cup E_1 \cup E_2 \cup E_3 \cup \{a, b\}$, where $a = (y, t)$ and $b = (x, t)$ and

\begin{align*}
E_0 &= \{(s, u) \mid u \in U\}; \\
E_1 &= \{(u, w) \mid uw \in E_1\} \quad \text{(we directed the edges in E_1 from U to W);} \\
E_2 &= \{(w, y) \mid w \in W\}; \\
E_3 &= \{(u, x) \mid u \in U\}.
\end{align*}

We define capacities $c(a) = 3q$, $c(b) = 3m - 3q$, $c \equiv 3$ on $E_0 \cup E_3$ and $c \equiv 1$ on $E_1 \cup E_2$. We observe that $v(E) = 3m$. Furthermore, $e_1 = 0$, and $x \equiv 0$ on $E_1 \cup E_2$ for any feasible solution $(x, 0)$ of (LP_1'). This can be seen as follows. Let e be an arbitrary edge in $E_1 \cup E_2$. By construction of G (recall each $w \in W$ has degree at least two in I), we can choose a coalition $A \subseteq E \setminus \{e\}$ with $v(A) = 3m$. We deduce $3m = x(E) \geq x(A) \geq 3m + e_1 f(A)$. Figure 2. The graph G given an instance (U, W) of **Exact 3-Cover**.
Because \(v(A) > 0 \), by definition, \(f(A) > 0 \), and we obtain \(e_i \leq 0 \). Because flow games have a nonempty core (Kalai and Zemel [20]), we then find \(e_i = 0 \). Now let \((x, 0)\) be a feasible solution of \((\text{LP}_1^f)\). Then \(x(e) = 0 \) follows from \(x \geq 0 \) together with \(x([e]) = x([e] \cup A) - x(A) \leq x(E) - v(A) = 3m - 3m = 0 \). Hence, indeed \(x \equiv 0 \) on \(E_1 \cup E_3 \).

We are now ready to formulate our claim, which immediately shows that computing an allocation in the \(f \)-nucleus is NP-hard. For an allocation \(x \), we define \(\min^*(x) = x_b + \min \{ x(E)|E_0 \subset E_0 \text{ and } |E_0| = m-q \} \).

Claim 1. The set \(U \) contains an exact cover if and only if \(\min^*(x') = 3m - 3q \) for each allocation \(x' \) in the \(f \)-nucleus of \((E, v)\).

Note that computing \(\min^*(x) \) for a given allocation \(x \) is easy, so indeed we are done after proving this claim. The proof goes as follows. Suppose \(U \) contains an exact cover \(C \). Let \(E_c \subset E_0 \) consist of all edges \((s, u)\) for \(u \in C \), and let \(E_C = E_0 \setminus E_c \). Note \(|E_C| = m - q \). Define \(A = E_C \cup E_1 \cup E_2 \cup \{ a \} \) and \(B = E_c \cup E_3 \cup \{ b \} \). Then \(v(A) = 3q \) and \(v(B) = 3m - 3q \). Now let \(x' \) be an allocation in the \(f \)-nucleus of \((E, v)\). Then \((x', 0)\) is a feasible solution of \((\text{LP}_1^f)\), and consequently \(x' \equiv 0 \) on \(E_1 \cup E_3 \). Then \(3m = x'(E) = x'(A) + x'(B) \geq v(A) + v(B) = 3q + 3m - 3q = 3m \). Hence \(x'(A) = 3q \) and \(x'(B) = 3m - 3q \). Because \(x' \equiv 0 \) on \(E_1 \), we obtain \(x_b' + x'(E_C) = x'(B) = 3m - 3q \). For any other \(E'_0 \subset E_0 \) with \(|E'_0| = m - q\) we find \(x_b' + x'(E'_0) = x'(E'_0 \cup E_1 \cup \{ b \}) \geq v(E'_0 \cup E_1 \cup \{ b \}) = 3m - 3q \). Hence \(\min^*(x') = 3m - 3q \).

To prove the reverse implication suppose \(U \) does not contain an exact cover. We show that \((\text{LP}_2^f)\) can be formulated as

\[
(\text{LP}_2^f)_{E_2} := \max \varepsilon \\
\begin{align*}
x(A) &\geq v(A) + \varepsilon f(A) \quad A \in 2^E \setminus \langle E, \{ e | e \in E_1 \cup E_3 \} \rangle, \\
x(A) &\geq 0 \quad A \subseteq E_1 \cup E_3, \\
x(E) &\geq 3m.
\end{align*}
\]

Then, for any \(x' \) in the \(f \)-nucleus of \((E, v)\) and any \(E'_0 \subset E_0 \) with \(|E'_0| = m - q\), we find

\[
x_b' + x'(E'_0) = x'(E'_0 \cup E_1 \cup \{ b \}) \\
\geq v(E'_0 \cup E_1 \cup \{ b \}) + e_2 f(E'_0 \cup E_3 \cup \{ b \}) \\
\geq 3m - 3q + e_2 f(E'_0 \cup E_1 \cup \{ b \}) \\
> 3m - 3q,
\]

and consequently \(\min^*(x') > 3m - 3q \) (note \(f(E'_0 \cup E_1 \cup \{ b \}) > 0 \) because \(v(E'_0 \cup E_1 \cup \{ b \}) > 0 \)).

We now define allocation \(x \) by \(x_g = 3q - 3q\beta - qa - \delta \), \(x_s = 3m - 3q - (m - q)a + \delta \), \(x_\alpha \equiv a \) on \(E_0 \), \(x \equiv 0 \) on \(E_1 \cup E_3 \), and \(x \equiv \beta \) on \(E_2 \) for sufficiently small \(\alpha > 0 \) and sufficiently small \(0 < \beta \), \(\delta < \alpha \) and are done after showing that \((x, 0)\) is a feasible solution of \((\text{LP}_2^f)\) with \(x(A) > v(A) \) for all \(A \notin \langle E, \{ e | e \in E_1 \cup E_3 \} \rangle \).

So, let \(A \) be a coalition not in \((E, \{ e | e \in E_1 \cup E_3 \}) \). Then \(x(A) > 0 \) for sufficiently small \(\alpha, \beta, \delta > 0 \). If \(v(A) = 0 \), then \(x(A) > 0 = v(A) \). Suppose \(v(A) > 0 \). Then \(\{ a, b \} \cap A \neq \emptyset \). First assume \(a \in A \), \(b \notin A \). Because \(x' \equiv 0 \) on \(E_1 \), we may without loss of generality assume \(E_1 \subset A \). Let \(E_0 \cap A = E_0' \) and let \(E_2 \cap A = E_2' \). If \(|E'_0| \leq q\), then \(v(A) \leq 3q - 1 \) (because otherwise \(U \) would have an exact cover), and we find

\[
x(A) - v(A) \geq \alpha|E'_0| + \beta|E_2'| + 3q - 3q\beta - qa - \delta - (3q - 1) \\
= 1 + \alpha(|E'_0| - q) + \beta(|E_2'| - 3q) - \delta > 0,
\]

if we have chosen \(\alpha, \beta, \delta > 0 \) sufficiently small. If \(|E'_0| \geq q + 1\), then \(v(A) \leq 3q \), and we find

\[
x(A) - v(A) \geq \alpha|E'_0| + \beta|E_2'| + 3q - 3q\beta - qa - \delta - 3q \\
= \alpha(|E'_0| - q) + \beta(|E_2'| - 3q) - \delta > 0,
\]

if we have chosen \(\alpha > 0 \) and \(0 < \beta, \delta < \alpha \) sufficiently small.

Second, assume \(a \notin A \), \(b \in A \). Because \(x' \equiv 0 \) on \(E_3 \), we may without loss of generality assume \(E_3 \subset A \). Let \(E_0 \cap A = E_0' \). If \(|E'_0| \leq m - q - 1\), then

\[
x(A) - v(A) = \alpha|E'_0| + 3m - 3q - (m - q)a + \delta - 3|E'_0| \\
\geq 3 + \alpha(|E'_0| - m + q) + \delta > 0,
\]
if we have chosen $\alpha > 0$ sufficiently small. If $|E'_0| \geq m - q$, then

$$x(A) - v(A) = \alpha |E'_0| + 3m - 3q - (m - q)\alpha + \delta - (3m - 3q) \geq \delta > 0.$$

If both $a, b \in A$, then $v(A) \leq 3m - 1$, because otherwise $A \in \langle E, \{e\}_{e \in E \cup \bar{E}} \rangle$. Hence

$$x(A) - v(A) \geq x_a + x_b - 3m + 1$$

$$= 3q - 3q\beta - q\alpha - \delta + 3m - 3q - (m - q)\alpha + \delta - 3m + 1$$

$$= -3q\beta - m\alpha + 1 > 0$$

for α, β sufficiently small. This completes our proof. \qed

Because of Theorem 3.1 we immediately find the following corollary.

Corollary 1. Computing the nucleolus, the per-capita nucleolus and the nucleon are \textbf{NP}-hard problems for the class of flow games.

4. Conclusions. We presented a new combinatorial method by which we obtain efficient algorithms for computing the core, nucleolus, and nucleon of simple flow games. We also showed that for (general) flow games, computing an allocation in the f-nucleolus is \textbf{NP}-hard for all suitable priority functions f. As a consequence, computing the nucleolus, per-capita nucleolus, and nucleon are \textbf{NP}-hard problems for the class of flow games. This generalizes the \textbf{NP}-hardness result in Deng et al. [4] for the nucleolus. The following questions are interesting.

1. Is computing the per capita nucleolus, or more generally, the f-nucleolus of a simple flow game polynomially solvable for all suitable priority functions f?

2. Can the class of simple flow games be extended to a larger subclass of flow games for which efficient algorithms exist for computing the core, nucleolus, or nucleon?

Answering question 1 might not be an easy task. A similar study for matching games is still unfinished. Computing the nucleon of a matching game can be done in polynomial time (Faigle et al. [8]). However, the complexity of computing the nucleolus of a matching game is still a wide open problem.

Because the nucleolus for matching games defined on an undirected graph $G = (V, E)$ with edge weights $w(u, v) = w(u) + w(v)$ for vertex weights $w \in \mathbb{R}^V_+$ can be efficiently computed (Paulusma [24]), a candidate for an answer to question 2 might be the subclass of flow games that are defined on a network $G = (V, E)$ with edge capacities $c(u, v) = c(u) + c(v)$ for vertex capacities $c \in \mathbb{R}^V_+$.

Acknowledgments. The second author is supported by EPSRC, Project EP/D053633/1. Both authors thank Eilon Solan and the two anonymous referees for all their useful comments, which helped improve the paper very much. The authors especially thank one anonymous referee for pointing out that coalitions in \mathcal{P}_i do not have to be s–t path coalitions.

References

