Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

First-order definable retraction problems for posets and reflexive graphs.

Dalmau, V. and Krokhin, A. and Larose, B. (2004) 'First-order definable retraction problems for posets and reflexive graphs.', in 19th annual IEEE symposium on logic in computer science, LICS'04, 13-17 July 2004, Turku, Finland ; proceedings. , pp. 232-241.

Abstract

A retraction from a structure P to its substructure Q is a homomorphism from P onto Q that is the identity on Q. We present an algebraic condition which completely characterises all posets and all reflexive graphs Q with the following property: the class of all posets or reflexive graphs, respectively, that admit a retraction onto Q is first-order definable.

Item Type:Book chapter
Full text:(VoR) Version of Record
Download PDF
(167Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1109/LICS.2004.1319617
Publisher statement:©2004 IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Date accepted:No date available
Date deposited:06 April 2010
Date of first online publication:2004
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar