We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Ice marginal dynamics during surge activity, Kuannersuit Glacier, Disko Island, West Greenland.

Roberts, D. H. and Yde, J. and Long, A .J. and Knudsen, N. T. and Lloyd, J. M. (2009) 'Ice marginal dynamics during surge activity, Kuannersuit Glacier, Disko Island, West Greenland.', Quaternary science reviews., 28 (3-4). pp. 209-222.


The Kuannersuit Glacier surged 11 km between 1995 and 1998. The surge resulted in the formation of an ice cored thrust moraine complex constructed by subglacial and proglacial glaciotectonic processes. Four main thrust zones are evident in the glacier snout area with phases of compressional folding and thrusting followed by hydrofracture in response to the build-up of compressional stresses and the aquicludal nature of submarginal permafrost and naled. Various types of stratified debris-rich ice facies occur within the marginal zone: The first (Facies I) comprises laterally continuous strata of ice with sorted sediment accumulations, and is reworked and thrust naled ice. The second is laterally discontinuous stratified debris-rich ice with distinct tectonic structures, and is derived through subglacial extensional deformation and localised regelation (Facies II), whilst the third type is characterised by reworked and brecciated ice associated with the reworking and entrainment of meteoric ice (Facies III). Hydrofracture dykes and sills (Facies IV) cross-cut the marginal ice cored thrust moraines, with their sub-vertically frozen internal contact boundaries and sedimentary structures, suggesting supercooling operated as high-pressure evacuation of water occurred during thrusting, but this is not related to the formation of basal stratified debris-rich ice. Linear distributions of sorted fines transverse to ice flow, and small stratified sediment ridges that vertically cross-cut the ice surface up-ice of the thrust zone relate to sediment migration along crevasse traces and fluvial infilling of crevasses. From a palaeoglaciological viewpoint, marginal glacier tectonics, ice sediment content and sediment delivery mechanisms combine to control the development of this polythermal surge valley landsystem. The bulldozing of proglacial sediments and the folding and thrusting of naled leads to the initial development of the outer zone of the moraine complex. This becomes buried in bulldozed outwash sediment and well-sorted fines through surface ablation of naled. Up-ice of this, the heavily thrust margin becomes buried in sediment melted out from basal debris-rich ice and subglacial diamicts routed along thrusts. These mechanisms combine to deliver sediment to supraglacial localities, and promote the initial preservation of structurally controlled moraines through insulation, and the later development of kettled dead ice terrain.

Item Type:Article
Full text:Full text not available from this repository.
Publisher Web site:
Date accepted:No date available
Date deposited:No date available
Date of first online publication:February 2009
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar