We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Landscape evolution at extensional relay zones.

Densmore, A.L. and Dawers, N.H. and Gupta, S. and Allen, P.A. and Gilpin, R. (2003) 'Landscape evolution at extensional relay zones.', Journal of geophysical research : solid earth., 108 (B5). p. 2273.


It is commonly argued that the extensional relay zones between adjacent crustal-scale normal fault segments are associated with large catchment-fan systems that deliver significant amounts of sediment to hanging wall basins. This conceptual model of extensional basin development, while useful, overlooks some of the physical constraints on catchment evolution and sediment supply in relay zones. We argue that a key factor in the geomorphic evolution of relay zones is the interplay between two different timescales, the time over which the fault array develops, and the time over which the footwall catchment-fan systems are established. Results of numerical experiments using a landscape evolution model suggest that, in isolated fault blocks, footwall catchment evolution is highly dependent on the pattern and rate of fault array growth. A rapidly linked en echelon fault geometry gives rise to capture of relay zone drainage by aggressive catchment incision in the relay zone and to consequent increases in the rate of sediment supply to the hanging wall. Capture events do not occur when the fault segments are allowed to propagate slowly toward an en echelon geometry. In neither case, however, are large relay zone catchment-fan systems developed. We propose several physical reasons for this, including geometric constraints and limits on catchment incision and sediment transport rates in relay zones. Future research efforts should focus on the timescales over which fault array development occurs, and on the quantitative variations in catchment-fan system morphology at relay zones.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2003 American Geophysical Union. Densmore, A. L. and Dawers, N. H. and Gupta, S. and Allen, P. A. and Gilpin, R. (2003) 'Landscape evolution at extensional relay zones.', Journal of geophysical research : solid earth., 108, 2273, 10.1029/2001JB001741. To view the published open abstract, go to and enter the DOI.
Date accepted:No date available
Date deposited:11 August 2010
Date of first online publication:May 2003
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar