Yoon, Mincheol and Ivrissimtzis, Ioannis (2008) 'Point set denoising using a variational Bayesian method.', Journal of KISS : computing practices and letters., 14 (5). pp. 527-531.
Abstract
For statistical modeling, the model parameters are usually estimated by maximizing a probability measure, such as the likelihood or the posterior. In contrast, a variational Bayesian method threats the parameters of the model as probability distributions and computes optimal distributions for them rather than values. It has been shown that this approach effectively avoids the overfitting problem, which is common with other parameter optimization methods. This paper applies a variational Bayesian technique to surface fitting for height field data. Then, we propose point cloud denoising based on the basic surface fitting technique. Validation experiments and further tests with scan data verify the robustness of the proposed method.
Item Type: | Article |
---|---|
Keywords: | Variational Bayesian method, Point set denoising, Overfitting control, Height field fitting, Computer Science, Artificial Intelligence,Computer Science, Cybernetics,Computer Science, Hardware &architecture,Computer Science, Information Systems,Computer Science, Software Engineering. |
Full text: | Full text not available from this repository. |
Publisher Web site: | http://ksci.kisti.re.kr/browse/browResult.ksci?browseBean.issSeq=JBGHIF_2008_v14n5 |
Date accepted: | No date available |
Date deposited: | No date available |
Date of first online publication: | 2008 |
Date first made open access: | No date available |
Save or Share this output
Export: | |
Look up in GoogleScholar |