We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Galaxy formation : a Bayesian uncertainty analysis.

Vernon, Ian and Goldstein, Michael and Bower, Richard G. (2010) 'Galaxy formation : a Bayesian uncertainty analysis.', Bayesian analysis., 05 (04). pp. 619-670.


In many scientific disciplines complex computer models are used to understand the behaviour of large scale physical systems. An uncertainty anal- ysis of such a computer model known as Galform is presented. Galform models the creation and evolution of approximately one million galaxies from the begin- ning of the Universe until the current day, and is regarded as a state-of-the-art model within the cosmology community. It requires the specification of many in- put parameters in order to run the simulation, takes significant time to run, and provides various outputs that can be compared with real world data. A Bayes Linear approach is presented in order to identify the subset of the input space that could give rise to acceptable matches between model output and measured data. This approach takes account of the major sources of uncertainty in a consistent and unified manner, including input parameter uncertainty, function uncertainty, observational error, forcing function uncertainty and structural uncertainty. The approach is known as History Matching, and involves the use of an iterative suc- cession of emulators (stochastic belief specifications detailing beliefs about the Galform function), which are used to cut down the input parameter space. The analysis was successful in producing a large collection of model evaluations that exhibit good fits to the observed data.

Item Type:Article
Additional Information:This was an invited discussion paper for Bayesian Analysis.
Keywords:Computer models, Uncertainty analysis, Model discrepancy, History matching, Bayes linear analysis, Galaxy formation, Galform.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Date accepted:No date available
Date deposited:06 April 2011
Date of first online publication:December 2010
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar