THE RECOGNITION OF TOLERANCE AND BOUNDED TOLERANCE GRAPHS*

GEORGE B. MERTZIOS†, IGNASI SAU‡, AND SHMUEL ZAKS§

Abstract. Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This subclass of perfect graphs has been extensively studied, due to both its interesting structure and its numerous applications (in bioinformatics, constraint-based temporal reasoning, resource allocation, and scheduling problems, among others). Several efficient algorithms for optimization problems that are NP-hard in general graphs have been designed for tolerance graphs. In spite of this, the recognition of tolerance graphs—namely, the problem of deciding whether a given graph is a tolerance graph—as well as the recognition of their main subclass of bounded tolerance graphs, have been the most fundamental open problems on this class of graphs (cf. the book on tolerance graphs [M. C. Golumbic and A. N. Trenk, Tolerance Graphs, Cambridge Stud. Adv. Math. 89, Cambridge University Press, Cambridge, UK, 2004]) since their introduction in 1982 [M. C. Golumbic and C. L. Monma, Proceedings of the 13th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 35 (1982), pp. 321–331]. In this article we prove that both recognition problems are NP-complete, even in the case where the input graph is a trapezoid graph. The presented results are surprising because, on the one hand, most subclasses of perfect graphs admit polynomial recognition algorithms and, on the other hand, bounded tolerance graphs were believed to be efficiently recognizable as they are a natural special case of trapezoid graphs (which can be recognized in polynomial time) and share a very similar structure with them. For our reduction we extend the notion of an acyclic orientation of permutation and trapezoid graphs. Our main tool is a new algorithm that uses vertex splitting to transform a given trapezoid graph into a permutation graph, while preserving this new acyclic orientation property. This method of vertex splitting is of independent interest; very recently, it was also proved a powerful tool in the design of efficient recognition algorithms for other classes of graphs [G. B. Mertzios and D. G. Corneil, Discrete Appl. Math., 159 (2011), pp. 1131–1147].

Key words. tolerance graphs, bounded tolerance graphs, recognition, vertex splitting, NP-complete, trapezoid graphs, permutation graphs

AMS subject classifications. Primary, 05C62; Secondary, 68Q25, 68R10, 05C17

DOI. 10.1137/090780328

1. Introduction.

1.1. Tolerance graphs and related graph classes. A simple undirected graph $G = (V, E)$ on n vertices is a tolerance graph if there exists a collection $I = \{I_i \mid i = 1, 2, \ldots, n\}$ of closed intervals on the real line and a set $t = \{t_i \mid i = 1, 2, \ldots, n\}$ of positive numbers such that for any two vertices $v_i, v_j \in V$, $v_iv_j \in E$ if and only if $|I_i \cap I_j| \geq \min\{t_i, t_j\}$. The pair (I, t) is called a tolerance representation of G. If G has a tolerance representation (I, t) such that $t_i \leq |I_i|$ for every $i = 1, 2, \ldots, n$, then G is called a bounded tolerance graph and (I, t) is a bounded tolerance representation of G.

Tolerance graphs were introduced in [12] in order to generalize some of the well-known applications of interval graphs. The main motivation was in the context of

*Received by the editors December 16, 2009; accepted for publication (in revised form) May 10, 2011; published electronically September 20, 2011. A preliminary conference version of this work appeared in the Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), Nancy, France, 2010, pp. 585–596.

http://www.siam.org/journals/sicomp/40-5/78032.html

†Caesarea Rothschild Institute, University of Haifa, Haifa, 31905, Israel (mertzios@research.haifa.ac.il).

‡AlGCo project-team, CNRS, LIRMM, 34095 Montpellier, France (ignasi.sau@lirmm.fr).

§Department of Computer Science, Technion, Haifa, 32000, Israel (zaks@cs.technion.ac.il).
resource allocation and scheduling problems, in which resources, such as rooms and vehicles, can tolerate sharing among users [15]. If we replace in the definition of tolerance graphs the operator \(\min \) by the operator \(\max \), we obtain the class of \textit{max-tolerance} graphs. Both tolerance and max-tolerance graphs find in a natural way applications in biology and bioinformatics, as in the comparison of DNA sequences from different organisms or individuals [19], by making use of a software tool BLAST [1]. Tolerance graphs find numerous other applications in constraint-based temporal reasoning and data transmission through networks to efficiently schedule aircraft and crews, as well as contributing to genetic analysis and studies of the brain [14, 15]. This class of graphs has attracted many research efforts [2, 4, 8, 13, 14, 15, 17, 20, 25, 27], as it generalizes in a natural way both interval graphs (when all tolerances are equal) and permutation graphs (when \(t_i = |I_i| \) for every \(i = 1, 2, \ldots, n \)) [12]. For a detailed survey on tolerance graphs we refer the reader to [15].

A graph is \textit{perfect} if the chromatic number of every induced subgraph equals the clique number of that subgraph. Several difficult combinatorial problems can be solved efficiently, i.e., in polynomial time, on the class of perfect graphs, such as minimum coloring, maximum clique, and independent set [16]. Thus, since the class of tolerance graphs is a subclass of perfect graphs [13], there exist polynomial algorithms for these problems on tolerance and bounded tolerance graphs as well. In spite of this, faster algorithms have been designed for tolerance and bounded tolerance graphs, which exploit their special structure [14, 15, 25, 27].

A \textit{comparability} graph is a graph which can be transitively oriented. A \textit{co-comparability} graph is a graph whose complement is a comparability graph. A \textit{trapezoid} (resp., \textit{parallelogram} and \textit{permutation}) graph is the intersection graph of trapezoids (resp., parallelograms and line segments) between two parallel lines \(L_1 \) and \(L_2 \) [10]. Such a representation with trapezoids (resp., parallelograms and line segments) is called a \textit{trapezoid} (resp., \textit{parallelogram} and \textit{permutation}) \textit{representation} of this graph. A graph is bounded tolerance if and only if it is a parallelogram graph [2, 21]. Permutation graphs are a strict subset of parallelogram graphs [3]. Furthermore, parallelogram graphs are a strict subset of trapezoid graphs [29], and both are subsets of co-comparability graphs [10, 15]. On the contrary, tolerance graphs are not even co-comparability graphs [10, 15]. Recently, we presented in [25] a natural intersection model for general tolerance graphs given by parallelepipeds in the three-dimensional space. This representation generalizes the parallelogram representation of bounded tolerance graphs and has been used to improve the time complexity of minimum coloring, maximum clique, and weighted independent set algorithms on tolerance graphs [25].

Although tolerance and bounded tolerance graphs have been studied extensively, the recognition problems for both classes have been the most fundamental open problems since their introduction in 1982 [5, 10, 15]. Therefore, all existing algorithms assume that, along with the input tolerance graph, a tolerance representation of it is given. The only result about the complexity of recognizing tolerance and bounded tolerance graphs is that they have a (nontrivial) polynomial-sized tolerance representation; hence the problems of recognizing tolerance and bounded tolerance graphs are in the class \(\text{NP} \) [17]. Recently, a linear time recognition algorithm for the subclass of \textit{bipartite tolerance} graphs was presented in [5]. Furthermore, the class of trapezoid graphs (which strictly contains parallelogram, i.e., bounded tolerance, graphs [29]) can be also recognized in polynomial time [22, 24, 31]. On the other hand, the recognition of max-tolerance graphs is known to be \(\text{NP}-\text{hard} \) [19]. Unfortunately, the structure of max-tolerance graphs differs significantly from that of tolerance graphs.
max-tolerance graphs are not even perfect, as they can contain induced C_5’s [19]), so the technique used in [19] does not carry over to tolerance graphs.

Since very few subclasses of perfect graphs are known to be NP-hard to recognize (for instance, perfectly orderable graphs [26], EPT graphs [11], and—recently—triangle graphs [23]), it was believed that the recognition of tolerance graphs was in P. Furthermore, as bounded tolerance graphs are equivalent to parallelogram graphs [2, 21], which constitute a natural subclass of trapezoid graphs and have a very similar structure, it was plausible that their recognition was also in P.

1.2. Our contribution. In this article we establish the complexity of recognizing tolerance and bounded tolerance graphs. Namely, we prove that both problems are surprisingly NP-complete, by providing a reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT) problem. Consider a boolean formula ϕ in conjunctive normal form with three literals in every clause (3-CNF), which is monotone; i.e., no variable is negated. The formula ϕ is called NAE-satisfiable if there exists a truth assignment of the variables of ϕ, such that every clause has at least one true variable and one false variable. Given a monotone 3-CNF formula ϕ, we construct a trapezoid graph H_ϕ which is parallelogram, i.e., bounded tolerance, if and only if ϕ is NAE-satisfiable. Moreover, we prove that the constructed graph H_ϕ is tolerance if and only if it is bounded tolerance. Thus, since the recognition of tolerance and the recognition of bounded tolerance graphs are in the class NP [17], it follows that both problems are NP-complete. Actually, our results imply that the recognition problems remain NP-complete even if the given graph is trapezoid, since the constructed graph H_ϕ is trapezoid.

For our reduction we extend the notion of an acyclic orientation of permutation and trapezoid graphs. Our main tool is a new algorithm that transforms a given trapezoid graph into a permutation graph by splitting some specific vertices, while preserving this new acyclic orientation property. One of the main advantages of this algorithm is that the constructed permutation graph does not depend on any particular trapezoid representation of the input graph G. Moreover, this approach based on splitting vertices has already been proved useful for the design of polynomial recognition algorithms for other classes of graphs [24].

Organization of the paper. We present in section 2 several properties of permutation and trapezoid graphs, as well as the algorithm Split-U, which constructs a permutation graph from a trapezoid graph. In section 3 we present the reduction of the monotone-NAE-3-SAT problem to the recognition of bounded tolerance graphs. In section 4 we prove that this reduction can be extended to the recognition of general tolerance graphs. Finally, we discuss the presented results and further research directions in section 5.

2. Trapezoid graphs and representations. In this section we introduce (in section 2.1) the notion of an acyclic representation of permutation and of trapezoid graphs. This is followed (in section 2.2) by some structural properties of trapezoid graphs, which will be used in what follows for the splitting algorithm Split-U. Given a trapezoid graph G and a vertex subset U of G with certain properties, this algorithm constructs a permutation graph $G^\#(U)$ with $2|U|$ vertices, which is independent of any particular trapezoid representation of the input graph G.

Notation. In this article we consider simple undirected and directed graphs with no loops or multiple edges. In an undirected graph G, the edge between vertices u and v is denoted by uv, and in this case u and v are said to be adjacent in G. If the graph

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
G is directed, we denote by uv the arc from u to v. Given a graph $G = (V, E)$ and a subset $S \subseteq V$, $G[S]$ denotes the induced subgraph of G on the vertices in S, and we use $E[S]$ to denote $E(G[S])$. Whenever we deal with a trapezoid (resp., permutation and bounded tolerance, i.e., parallelogram) graph, we will consider without loss of generality a trapezoid (resp., permutation and parallelogram) representation, in which all endpoints of the trapezoids (resp., line segments and parallelograms) are distinct [9, 15, 18]. Given a permutation graph P along with a permutation representation R, we may not distinguish in the following between a vertex of P and the corresponding line segment in R, whenever it is clear from the context. Furthermore, with a slight abuse of notation, we will refer to the line segments of a permutation representation simply as lines.

2.1. Acyclic permutation and trapezoid representations. Let $P = (V, E)$ be a permutation graph and R be a permutation representation of P. For a vertex $u \in V$, denote by $\theta_R(u)$ the angle of the line of u with L_2 in R. The class of permutation graphs is the intersection of comparability and co-comparability graphs [10]. Thus, given a permutation representation R of P, we can define two partial orders (V, \ll_R) and (V, \ll_R) on the vertices of P [10]. Namely, for two vertices u and v of G, $u \ll_R v$ if and only if $uv \in E$ and $\theta_R(u) < \theta_R(v)$, while $u \ll_R v$ if and only if $uv \notin E$ and u lies to the left of v in R. The partial order (V, \ll_R) implies a transitive orientation Φ_R of P, such that $uv \in \Phi_R$ whenever $u \ll_R v$.

Note that an alternative definition of the transitive orientation Φ_R of P is that $uv \in \Phi_R$ if and only if $u \ll_R v$ in the representation R' obtained by reversing in R the ordering of the points on the top line L_1. However, in the rest of the paper we will use the first definition of Φ_R, which involves the angles $\theta_R(u)$ and $\theta_R(v)$ of the lines of u and v in R, respectively. Intuitively, the main reason for using this definition of Φ_R is that, in any parallelogram representation, the two lines of every parallelogram have the same angle (see, for example, the proof of Lemma 3 below).

Let $G = (V, E)$ be a trapezoid graph, and let R be a trapezoid representation of G, where for any vertex $u \in V$, the trapezoid corresponding to u in R is denoted by T_u. Since trapezoid graphs are also co-comparability graphs [10], we can similarly define the partial order (V, \ll_R) on the vertices of G, such that $u \ll_R v$ if and only if $uv \notin E$ and T_u lies completely to the left of T_v in R. In this case, we may denote also $T_u \ll_R T_v$, instead of $u \ll_R v$.

In a given trapezoid representation R of a trapezoid graph G, we denote by $l(T_u)$ and $r(T_u)$ the left and the right line of T_u in R, respectively. Similarly to the case of permutation graphs, we use the relation \ll_R for the lines $l(T_u)$ and $r(T_u)$, e.g., $l(T_u) \ll_R r(T_v)$ means that the line $l(T_u)$ lies to the left of the line $r(T_v)$ in R. Moreover, if the trapezoids of all vertices of a subset $S \subseteq V$ lie completely to the left (resp., right) of the trapezoid T_u in R, we write $R(S) \ll_R T_u$ (resp., $T_u \ll_R R(S)$). Note that there are several trapezoid representations of a particular trapezoid graph G. Given one such representation R, we can obtain another one, R', by vertical axis flipping of R; i.e., R' is the mirror image of R along an imaginary line perpendicular to L_1 and L_2. Moreover, we can obtain another representation R'' of G by horizontal axis flipping of R; i.e., R'' is the mirror image of R along an imaginary line parallel to L_1 and L_2. We will use these two basic operations extensively throughout the article.

In the next two definitions we introduce the notions of acyclic permutation and acyclic trapezoid graphs. These two new notions of acyclicity are essential for proving some basic properties of our Algorithm Split-U (cf. Theorem 15), as well as for proving the correctness of our reduction in section 3.
DEFINITION 1. Let P be a permutation graph with $2n$ vertices $\{u_1^1, u_1^2, u_2^1, u_2^2, \ldots, u_n^1, u_n^2\}$. Let R be a permutation representation and Φ_R be the corresponding transitive orientation of P. The simple directed graph F_R is obtained by merging u_1^1 and u_2^1 into a single vertex u_i for every $i = 1, 2, \ldots, n$, where the arc directions of F_R are implied by the corresponding directions in Φ_R. That is, $u_i u_j$ is an arc in F_R if and only if $u_i^1 u_j^2 \in E(P)$ and $\theta_R(u_i^1) < \theta_R(u_j^2)$ for some $x, y \in \{1, 2\}$. Then,

1. R is an acyclic permutation representation\(^1\) with respect to $\{u_i^1, u_i^2\}_{i=1}^n$ if F_R has no directed cycle,

2. P is an acyclic permutation graph with respect to $\{u_i^1, u_i^2\}_{i=1}^n$ if P has an acyclic representation R with respect to $\{u_i^1, u_i^2\}_{i=1}^n$.

In Figure 1 we show an example of a permutation graph P with six vertices in Figure 1(a), a permutation representation R of P in Figure 1(b), the transitive orientation Φ_R of P in Figure 1(c), and the corresponding simple directed graph F_R in Figure 1(d). In the figure, the pairs $\{u_i^1, u_i^2\}_{i=1}^3$ are grouped inside ellipses. In this example, R is not an acyclic permutation representation with respect to $\{u_i^1, u_i^2\}_{i=1}^3$, since F_R has a directed cycle of length two. However, note that, by exchanging the lines u_1^1 and u_3^1 in R, the resulting permutation representation R' is acyclic with respect to $\{u_i^1, u_i^2\}_{i=1}^3$, and thus P is acyclic with respect to $\{u_i^1, u_i^2\}_{i=1}^3$.

\[\begin{array}{c}
\text{(a) } P : \\
\text{(b) } R : \\
\text{(c) } \Phi_R : \\
\text{(d) } F_R :
\end{array}\]

Fig. 1. (a) A permutation graph P, (b) a permutation representation R of P, (c) the transitive orientation Φ_R of P, and (d) the corresponding simple directed graph F_R.

DEFINITION 2. Let G be a trapezoid graph with n vertices, and let R be a trapezoid representation of G. Let P be the permutation graph with $2n$ vertices corresponding to the left and right lines of the trapezoids in R, let R_P be the permutation representation of P induced by R, and let $\{u_i^1, u_i^2\}$ be the vertices of P that correspond to the same vertex u_i of G, $i = 1, 2, \ldots, n$. Then,

1. R is an acyclic trapezoid representation if R_P is an acyclic permutation representation with respect to $\{u_i^1, u_i^2\}_{i=1}^n$,

2. G is an acyclic trapezoid graph if it has an acyclic representation R.

The following lemma follows easily from Definitions 1 and 2.

LEMMA 3. Any parallelogram graph is an acyclic trapezoid graph.

\(^1\)To simplify the presentation, throughout the paper we use $\{u_i^1, u_i^2\}_{i=1}^n$ to denote the set of n unordered pairs $\{u_1^1, u_1^2\}, \{u_2^1, u_2^2\}, \ldots, \{u_n^1, u_n^2\}$.
Proof. Let G be a parallelogram graph with n vertices $\{u_1, u_2, \ldots, u_n\}$, and let R be a parallelogram representation of G. That is, R is a trapezoid representation of G, such that the left and right lines $l(T_u)$ and $r(T_u)$ of the trapezoid T_u, $i = 1, 2, \ldots, n$, are parallel in R; i.e., $\theta_R(l(T_u)) = \theta_R(r(T_u))$. Let P be the permutation graph with $2n$ vertices $\{u_1, u_1^2, u_2, u_2^2, \ldots, u_n, u_n^2\}$ corresponding to the left and right lines of the trapezoids of G in R; i.e., the vertices u_i^1 and u_i^2 correspond to $l(T_u)$ and $r(T_u)$, $i = 1, 2, \ldots, n$, respectively. Let R_P be the permutation representation of P induced by R, and let Φ_{R_P} be the corresponding transitive orientation of the permutation graph P. Recall that, for two intersecting lines a, b in R_P, it holds $ab \in \Phi_{R_P}$ whenever $\theta_R(a) < \theta_R(b)$. It follows that for any $i = 1, 2, \ldots, n$, the pair $\{u_i^1, u_i^2\}$ of vertices in P has incoming edges from (resp., outgoing edges to) vertices of other pairs $\{u_j^1, u_j^2\}$ in Φ_{R_P}, which have a smaller (resp., greater) angle with the line L_2 in R_P. Thus, the simple directed graph Fr_p, defined in Definition 1 has no directed cycles, and therefore R_P is an acyclic permutation representation with respect to $\{u_i^1, u_i^2\}_{i=1}^n$; i.e., R is an acyclic trapezoid representation of G by Definition 2. \qed

2.2. Structural properties of trapezoid graphs

In the following, we state some definitions and notions concerning an arbitrary simple undirected graph $G = (V, E)$. These notions are essential in order to present and analyze our Algorithm Split-U (in section 2.3). Although these definitions apply to any graph, we will use them only for trapezoid graphs. Similar definitions, for the restricted case where the graph G is connected, were studied in [6]. For $u \in V$ and $U \subseteq V$, $N(u) = \{v \in V \mid uv \in E\}$ is the set of adjacent vertices of u in G, $N[u] = N(u) \cup \{u\}$, and $N(U) = \bigcup_{u \in U} N(u) \setminus U$. If $N(U) \subseteq N(W)$ for two vertex subsets U and W, then U is said to be neighborhood dominated by W. Clearly, the relationship of neighborhood domination is transitive.

Let $C_1, C_2, \ldots, C_\omega$, $\omega \geq 1$, be the connected components of $G \setminus N[u]$ and $V_i = V(C_i)$, $i = 1, 2, \ldots, \omega$. For simplicity of the presentation, we will identify in what follows the component C_i and its vertex set V_i, $i = 1, 2, \ldots, \omega$. For $i = 1, 2, \ldots, \omega$, the neighborhood domination closure of V_i with respect to u is the set $D_u(V_i) = \{V_p \mid N(V_p) \subseteq N(V_i), p = 1, 2, \ldots, \omega\}$ of connected components of $G \setminus N[u]$. The closure complement of the neighborhood domination closure $D_u(V_i)$ is the set $D_u^*(V_i) = \{V_1, V_2, \ldots, V_\omega\} \setminus D_u(V_i)$.

For a subset $S \subseteq \{V_1, V_2, \ldots, V_\omega\}$, a component V_i of S is called maximal if there is no component $V_j \in S$ such that $N(V_i) \subseteq N(V_j)$. Furthermore, a connected component V_i of $G \setminus N[u]$ is called a master component of u if V_i is a maximal component of $\{V_1, V_2, \ldots, V_\omega\}$.

Intuitively, if G is a trapezoid graph and R is a trapezoid representation of G, one can think of a master component V_i of u as the first connected component of $G \setminus N[u]$ to the right or to the left of T_u in R. For example, consider the trapezoid graph G with vertex set $\{u, u_1, u_2, u_3, v_1, v_2, v_3, v_4\}$, which is given by the trapezoid representation R of Figure 2. The connected components of $G \setminus N[u] = \{v_1, v_2, v_3, v_4\}$ are $V_1 = \{v_1\}$, $V_2 = \{v_2\}$, $V_3 = \{v_3\}$, and $V_4 = \{v_4\}$. Then, $N(V_1) = \{u_1\}$, $N(V_2) = \{u_1, u_3\}$, $N(V_3) = \{u_2, u_4\}$, and $N(V_4) = \{u_3\}$; thus V_2 and V_3 are the only master components of u. Furthermore, $D_u(V_1) = \{V_1\}$, $D_u(V_2) = \{V_1, V_2, V_4\}$, $D_u(V_3) = \{V_3, V_4\}$, and $D_u(V_4) = \{V_4\}$. Therefore, $D_u^*(V_1) = \{V_2, V_3, V_4\}$, $D_u^*(V_2) = \{V_3, V_4\}$, $D_u^*(V_3) = \{V_1, V_2\}$, and $D_u^*(V_4) = \{V_1, V_2, V_3\}$.

Lemma 4. Let G be a simple graph, let u be a vertex of G, and let $V_1, V_2, \ldots, V_\omega$, $\omega \geq 1$, be the connected components of $G \setminus N[u]$. If V_i is a master component of u such that $D_u^*(V_i) \neq \emptyset$, then $D_u^*(V_j) \neq \emptyset$ for every component V_j of $G \setminus N[u]$.\[\]
Proof. The proof is done by contradiction. Suppose that there exists a component V_j of $G \setminus N[u]$ such that $D_u^*(V_j) = \emptyset$. That is, $N(V_k) \subseteq N(V_j)$ for every component V_k of $G \setminus N[u]$. Therefore, in particular, $N(V_i) \subseteq N(V_j)$. Suppose first that $N(V_i) = N(V_j)$. Then $N(V_k) \subseteq N(V_i)$ for every component V_k of $G \setminus N[u]$, and thus $D_u^*(V_i) = \emptyset$, which is a contradiction. Suppose now that $N(V_i) \not\subseteq N(V_j)$. Then V_i is not a master component of u, which is again a contradiction. Therefore $D_u^*(V_j) \neq \emptyset$ for every component V_j of $G \setminus N[u]$. \hfill \Box

In the following we investigate several properties of trapezoid graphs, in order to derive the vertex-splitting algorithm Split-U in section 2.3.

Remark 1. Similar properties of trapezoid graphs have been studied in [6], leading to another vertex-splitting algorithm, called Split-All. However, the algorithm proposed in [6] is incorrect, since it is based on an incorrect property,\(^2\) as was also verified by [7]. In the remainder of this section, we present new definitions and properties. In the cases where a similarity arises with those of [6], we refer to it specifically.

The next lemma, which has been stated in Observation 3.1(4) of [6] (without a proof), will be used in our analysis below. For the sake of completeness, we present its proof in the following.

Lemma 5. Let R be a trapezoid representation of a trapezoid graph G, and let V_i be a master component of a vertex u of G such that $R(V_i) \preccurlyeq_R T_u$. Then, $T_u \preccurlyeq_R R(V_j)$ for every component $V_j \in D_u^*(V_i)$.

Proof. Suppose otherwise that $R(V_j) \preccurlyeq_R T_u$ for some $V_j \in D_u^*(V_i)$. Consider first the case where $R(V_j) \preccurlyeq_R R(V_i) \preccurlyeq_R T_u$. Then, since V_i lies between V_j and T_u in R, all trapezoids that intersect T_u and V_j must also intersect V_i. Thus, $N(V_j) \subseteq N(V_i)$, i.e., $V_j \in D_u(V_i)$, which is a contradiction, since $V_j \notin D_u^*(V_i)$. Consider now the case where $R(V_i) \preccurlyeq_R R(V_j) \preccurlyeq_R T_u$. Then, we obtain similarly that $N(V_i) \subseteq N(V_j)$. If $N(V_i) = N(V_j)$, then $V_j \in D_u(V_i)$, which is a contradiction to the assumption, since $V_j \notin D_u^*(V_i)$. Otherwise, if $N(V_i) \not\subseteq N(V_j)$, then V_i is not a master component of u, which is again a contradiction to the assumption. Thus, $T_u \preccurlyeq_R R(V_j)$ for every $V_j \in D_u^*(V_i)$. \hfill \Box

In the following two definitions, we partition the neighbors $N(u)$ of a vertex u in a trapezoid graph G into four possibly empty sets. In the first definition, these sets depend on the graph G itself and on two particular connected components V_i.

\(^2\)In [6], a different definition of a master component has been given. Namely, according to [6], a component V_i is called a master component of u if $|D_u(V_i)| \geq |D_u(V_j)|$ for all $j = 1, 2, \ldots, \omega$. In Observation 3.1(5) of [6], it is claimed that for an arbitrary trapezoid representation R of a connected trapezoid graph G, where V_i is a master component of u such that $D_u^*(V_i) \neq \emptyset$ and $R(V_i) \preccurlyeq_R T_u$, it holds $R(D_u(V_i)) \preccurlyeq_R T_u \preccurlyeq_R R(D_u^*(V_i))$. However, the first part of the latter inequality is not true. For instance, in the trapezoid graph G of Figure 2, $V_2 = \{v_2\}$ is a master component of u (according to the definition of [6]), where $D_u^*(V_2) = \{v_3\}$, $\{v_3\} \neq \emptyset$ and $R(V_2) \preccurlyeq_R T_u$. However, $V_i = \{v_4\} \in D_u(V_2)$ and $T_u \preccurlyeq_R T_{v_4}$, and thus, $R(D_u(V_2)) \preccurlyeq_R T_u$.

\[Fig. 2. A trapezoid representation R of a trapezoid graph G.\]
and \(V_j \) of \(G \setminus N[u] \), while in the second one, they depend on a particular trapezoid representation \(R \) of \(G \).

Definition 6. Let \(G \) be a trapezoid graph, and let \(u \) be a vertex of \(G \). Let \(V_i \) be a master component of \(u \), such that \(D^*_u(V_i) \neq \emptyset \), and let \(V_j \) be a maximal component of \(D^*_u(V_i) \). Then, the vertices of \(N(u) \) are partitioned into four possibly empty sets:

1. \(N_0(u, V_i, V_j) \): vertices not adjacent to either \(V_i \) or \(V_j \),
2. \(N_1(u, V_i, V_j) \): vertices adjacent to \(V_i \) but not to \(V_j \),
3. \(N_2(u, V_i, V_j) \): vertices adjacent to \(V_j \) but not to \(V_i \),
4. \(N_{12}(u, V_i, V_j) \): vertices adjacent to both \(V_i \) and \(V_j \).

Definition 7. Let \(G \) be a trapezoid graph, \(R \) be a representation of \(G \), and \(u \) be a vertex of \(G \). Denote by \(D_1(u, R) \) and \(D_2(u, R) \) the sets of trapezoids of \(R \) that lie completely to the left and to the right of \(T_u \) in \(R \), respectively. Then, the vertices of \(N(u) \) are partitioned into four possibly empty sets:

1. \(N_0(u, R) \): vertices not adjacent to either \(D_1(u, R) \) or \(D_2(u, R) \),
2. \(N_1(u, R) \): vertices adjacent to \(D_1(u, R) \) but not to \(D_2(u, R) \),
3. \(N_2(u, R) \): vertices adjacent to \(D_2(u, R) \) but not to \(D_1(u, R) \),
4. \(N_{12}(u, R) \): vertices adjacent to both \(D_1(u, R) \) and \(D_2(u, R) \).

The following lemma connects the last two definitions; in particular, it states that if \(R(V_i) \ll_R T_u \), then the partitions of the set \(N(u) \) defined in Definitions 6 and 7 coincide. This lemma will enable us to define in what follows a partition of the set \(N(u) \), independently of any trapezoid representation \(R \) of \(G \) and regardless of any particular connected components \(V_i \) and \(V_j \) of \(G \setminus N[u] \); cf. Definition 10.

Lemma 8. Let \(G \) be a trapezoid graph, \(R \) be a representation of \(G \), and \(u \) be a vertex of \(G \). Let \(V_i \) be a master component of \(u \) such that \(D^*_u(V_i) \neq \emptyset \), and let \(V_j \) be a maximal component of \(D^*_u(V_i) \). If \(R(V_i) \ll_R T_u \), then \(N_X(u, V_i, V_j) = N_X(u, R) \) for every \(X \in \{0,1,2,12\} \).

Proof. Since \(D^*_u(V_i) \neq \emptyset \) and \(R(V_i) \ll_R T_u \), it follows by Lemma 5 that \(T_u \ll_R R(V_j) \), i.e., \(V_j \subseteq D_2(u, R) \). Suppose that a component \(V_i \neq V_j \) is the leftmost one of \(D_2(u, R) \) in \(R \), i.e., \(T_u \ll_R R(V_i) \ll_R R(V_j) \). Since \(V_j \) lies between \(T_u \) and \(V_j \) in \(R \), all trapezoids that intersect \(T_u \) and \(V_j \) must also intersect \(V_i \), and thus, \(N(V_j) \subseteq N(V_i) \). It follows that \(V_j \in D^*_u(V_i) \), i.e., \(V_i \notin D_2(u, V_i) \), since otherwise \(V_j \in D(u, V_i) \), which is a contradiction. Furthermore, since \(V_j \) is a maximal component of \(D^*_u(V_i) \), and since \(N(V_j) \subseteq N(V_i) \), it follows that \(N(V_j) = N(V_i) \); i.e., \(N_X(u, V_i, V_j) = N_X(u, V_i, V_i) \) for every \(X \in \{0,1,2,12\} \).

Suppose that a component \(V_k \neq V_i \) is the rightmost one of \(D_1(u, R) \) in \(R \), i.e., \(R(V_i) \ll_R R(V_k) \ll_R T_u \). Then, \(V_k \in D_2(u, V_i) \), since otherwise \(T_u \ll_R R(V_k) \) by Lemma 5, which is a contradiction. Thus, \(N(V_k) \subseteq N(V_i) \). Furthermore, since \(V_k \) lies between \(V_i \) and \(T_u \) in \(R \), all trapezoids that intersect \(T_u \) and \(V_i \) must also intersect \(V_k \), and thus, \(N(V_i) \subseteq N(V_k) \). Therefore, \(N(V_i) = N(V_k) \); i.e., \(N_X(u, V_i, V_i) = N_X(u, V_i, V_i) \) for every \(X \in \{0,1,2,12\} \), and thus, \(N_X(u, V_i, V_j) = N_X(u, V_k, V_i) \) for every \(X \in \{0,1,2,12\} \).

Now consider a vertex \(v \in N(u) \), and recall that \(V_k \) (resp., \(V_i \)) is the rightmost (resp., leftmost) component of \(D_1(u, R) \) (resp., \(D_2(u, R) \)) in \(R \). Thus, if \(T_u \) intersects at least one component of \(D_1(u, R) \) (resp., \(D_2(u, R) \)), then \(T_u \) intersects also with \(V_k \) (resp., \(V_i \)). On the other hand, if \(T_u \) does not intersect any component of \(D_1(u, R) \) (resp., \(D_2(u, R) \)), then \(T_u \) clearly does not intersect \(V_k \) (resp., \(V_i \)), since \(V_k \subseteq D_1(u, R) \) (resp., \(V_j \subseteq D_2(u, R) \)). It follows that \(N_X(u, V_k, V_i) = N_X(u, R) \), and thus, \(N_X(u, V_i, V_j) = N_X(u, R) \) for every \(X \in \{0,1,2,12\} \). This proves the lemma.

Note that, given a trapezoid representation \(R \) of \(G \), we may assume in Lemma 8 without loss of generality that \(R(V_i) \ll_R T_u \), by possibly performing a vertical axis
flipping of R. Thus, we can now state the following definition of the sets δ_u and δ^*_u, regardless of the choice of the components V_i and V_j of u.

Definition 9. Let $G = (V, E)$ be a trapezoid graph, u be a vertex of G, and V_i be an arbitrarily chosen master component of u. Then, $\delta_u = V_i$ and

1. if $D^*_u(V_i) = \emptyset$, then $\delta^*_u = \emptyset$;
2. if $D^*_u(V_i) \neq \emptyset$, then $\delta^*_u = V_j$ for an arbitrarily chosen maximal component $V_j \in D^*_u(V_i)$.

From now on, whenever we speak about δ_u and δ^*_u, we assume that these arbitrary choices of V_i and V_j have been already made. Now, we are ready to define the following partition of the set $N(u)$, which will be used for the vertex splitting in Algorithm Split-U; cf. Definition 13.

Definition 10. Let G be a trapezoid graph and u be a vertex of G. The vertices of $N(u)$ are partitioned into four possibly empty sets:

1. $N_0(u)$: vertices not adjacent to either δ_u or δ^*_u,
2. $N_1(u)$: vertices adjacent to δ_u but not to δ^*_u,
3. $N_2(u)$: vertices adjacent to δ^*_u but not to δ_u,
4. $N_{12}(u)$: vertices adjacent to both δ_u and δ^*_u.

The next corollary follows now from Lemma 8 and Definitions 9 and 10. Intuitively, Corollary 11 states that, by possibly performing a vertical axis flipping of a given trapezoid representation R of G, the components V_i and V_j of Definition 6 can be thought of as the rightmost (resp., leftmost) connected component of $G \setminus N[u]$ to the left (resp., to the right) of T_u in R.

Corollary 11. Let G be a trapezoid graph, R be a representation of G, and u be a vertex of G with $\delta^*_u \neq \emptyset$. Let V_i be the master component of u that corresponds to δ_u. If $R(V_i) \ll_T T_u$, then $N_X(u) = N_X(u, R)$ for every $X \in \{0, 1, 2, 12\}$.

The next lemma, which connects δ^*_u with the sets $N_1(u, R)$ and $N_2(u, R)$ in an arbitrary trapezoid representation R (see Definition 7), will be used in the proof of Theorem 15.

Lemma 12. Let G be a trapezoid graph, R be a trapezoid representation of G, and u be a vertex of G. Then, $\delta^*_u \neq \emptyset$ if and only if $N_1(u, R) \neq \emptyset$ and $N_2(u, R) \neq \emptyset$.

Proof. Recall first by Definition 7 that $D_1(u, R)$ and $D_2(u, R)$ are the sets of trapezoids of R that lie completely to the left and to the right of T_u in R, respectively. Furthermore, recall by Definition 7 that $N_1(u, R)$ are the neighbors of u that are adjacent to $D_1(u, R)$ but not to $D_2(u, R)$, while $N_2(u, R)$ are the neighbors of u that are adjacent to $D_2(u, R)$ but not to $D_1(u, R)$.

Suppose first that $\delta^*_u \neq \emptyset$. Let $\delta_u = V_i$ and $\delta^*_u = V_j$, where V_i is a master component of u and V_j is a maximal component of $D^*_u(V_i)$. By possibly performing a vertical axis flipping of R, we may assume without loss of generality that $R(V_i) \ll_T T_u$, and thus Corollary 11 implies that $N_1(u) = N_1(u, R)$ and $N_2(u) = N_2(u, R)$. Recall by Definition 10 that $N(V_i) = N_1(u) \cup N_{12}(u)$ and that $N(V_j) = N_2(u) \cup N_{12}(u)$. Assume that $N_2(u) = \emptyset$. Then $N(V_j) = N_{12}(u) \subseteq N_1(u) \cup N_{12}(u) = N(V_i)$, i.e., $N(V_j) \subseteq N(V_i)$, and thus $V_j \in D_n(V_i)$, which is a contradiction. Therefore $N_2(u) \neq \emptyset$, and thus also $N_2(u, R) \neq \emptyset$. Assume now that $N_1(u) = \emptyset$. Then $N(V_i) = N_{12}(u) \subseteq N_2(u) \cup N_{12}(u) = N(V_j)$, i.e., $N(V_i) \subseteq N(V_j)$. If $N(V_i) \not\subseteq N(V_j)$, then V_i is not a master component, which is a contradiction. Otherwise, if $N(V_i) = N(V_j)$, then $V_j \in D_n(V_i)$, which is again a contradiction. Therefore $N_1(u) \neq \emptyset$, and thus also $N_1(u, R) \neq \emptyset$. Summarizing, if $\delta^*_u \neq \emptyset$, then $N_1(u, R) \neq \emptyset$ and $N_2(u, R) \neq \emptyset$.

Conversely, suppose that $N_1(u, R) \neq \emptyset$ and $N_2(u, R) \neq \emptyset$. Assume that $\delta^*_u = \emptyset$. Let V_i be the master component of u that corresponds to δ_u. Then, since $\delta^*_u = \emptyset$, it
Algorithm 1. Split-U.

Input: A trapezoid graph G and a vertex subset $U = \{u_1, u_2, \ldots, u_k\}$, such that $\delta_{u_i}^* \neq \emptyset$ for all $i = 1, 2, \ldots, k$.
Output: The permutation graph $G^*(U)$

\[\mathcal{U} \leftarrow V(G) \setminus U; \ H_0 \leftarrow G \]

for $i = 1$ to k do
\[H_i \leftarrow H_{i-1}^\{u_i\} \{H_i \text{ is obtained by the vertex splitting of } u_i \text{ in } H_{i-1}\} \]
end for

\[G^*(U) \leftarrow H_k[V(H_k) \setminus \mathcal{U}] \{\text{remove from } H_k \text{ all unsplitted vertices}\} \]
return $G^*(U)$

follows that $D_u^*(V_i) = \emptyset$. By possibly performing a vertical axis flipping of R, we may assume without loss of generality that $R(V_i) \ll_R T_u$, and thus Corollary 11 implies that $N_2(u) = N_1(u, R)$. Now, since $R(V_i) \ll_R T_u$ and $N_2(u, R) \neq \emptyset$, there exist by Definition 7 a vertex $v \notin N(u)$ and a vertex $v' \in N(u)$, such that $T_u \ll_R T_v$ and $v' \in N(v) \setminus N(V_i)$. Let V_j be the connected component of $G \setminus N[u]$ that contains vertex v. Then $v' \in N(V_j) \setminus N(V_i)$, and thus $N(V_j) \notin N(V_i)$; i.e., $V_j \in D_2^*(V_i)$. This is a contradiction, since $D_u^*(V_i) = \emptyset$. Therefore $\delta_u^* \neq \emptyset$. This completes the proof of the lemma. \[\Box \]

2.3. A splitting algorithm. We define now the splitting of a vertex u of a trapezoid graph G, where $\delta_u^* \neq \emptyset$. Note that this splitting operation does not depend on any trapezoid representation of G. Intuitively, if the graph G was given along with a specific trapezoid representation R, this would have meant that we replace the trapezoid T_u in R by its two lines $l(T_u)$ and $r(T_u)$.

Definition 13. Let G be a trapezoid graph and u be a vertex of G, where $\delta_u^* \neq \emptyset$. The graph $G^*(u)$ obtained by the vertex splitting of u is defined as follows:

1. $V(G^*(u)) = V(G) \setminus \{u\} \cup \{u_1, u_2\}$, where u_1 and u_2 are the two new vertices.
2. $E(G^*(u)) = E[V(G) \setminus \{u\}] \cup \{u_1x \mid x \in N_1(u)\} \cup \{u_2x \mid x \in N_2(u)\}$.

The vertices u_1 and u_2 are the derivatives of vertex u.

We now state the notion of a standard trapezoid representation with respect to a particular vertex.

Definition 14. Let G be a trapezoid graph and u be a vertex of G, where $\delta_u^* \neq \emptyset$. A trapezoid representation R of G is standard with respect to u if the following properties are satisfied:

1. $l(T_u) \ll_R R(N_0(u) \cup N_2(u))$.
2. $R(N_0(u) \cup N_1(u)) \ll_R r(T_u)$.

Now, given a trapezoid graph G and a vertex subset $U = \{u_1, u_2, \ldots, u_k\}$, such that $\delta_{u_i}^* \neq \emptyset$, $N_1(u_i) \setminus U \neq \emptyset$, and $N_2(u_i) \setminus U \neq \emptyset$, for every $i = 1, 2, \ldots, k$, Algorithm Split-U returns a graph $G^*(U)$ by splitting every vertex of U exactly once. At every step, Algorithm Split-U splits a vertex of U, and finally, it removes all vertices of the set $V(G) \setminus U$ which have not been split.

Remark 2. As mentioned in Remark 1, a similar algorithm, called Split-All, was presented in [6]. We would like to emphasize here the following four differences between the two algorithms. First, Split-All gets as input a sibling-free graph G (two vertices u, v of a graph G are called siblings if $N[u] = N[v]$; G is called sibling-free if G has no pair of sibling vertices), while our Algorithm Split-U gets as an input...
any graph (though we will use it only for trapezoid graphs), which may contain pairs of sibling vertices. Second, Split-All splits all the vertices of the input graph, while Split-U splits only a subset of them which satisfy a special property. Third, the order of vertices that are split by Split-All depends on a certain property (inclusion-minimal neighbor set), while Split-U splits the vertices in an arbitrary order. Last, the main difference between these two algorithms is that they perform a different vertex splitting operation at every step, since Definitions 9 and 10 do not comply with the corresponding Definitions 4.1 and 4.2 of [6].

Theorem 15. Let G be a trapezoid graph and $U = \{u_1, u_2, \ldots, u_k\}$ be a vertex subset of G, such that $\delta_u \neq \emptyset$, $N_1(u_i) \cup U \neq \emptyset$, and $N_2(u_i) \setminus U \neq \emptyset$ for every $i = 1, 2, \ldots, k$. Then, the graph $G^\#(U)$ obtained by Algorithm Split-U is a permutation graph with $2k$ vertices. Furthermore, if G is acyclic, then $G^\#(U)$ is acyclic with respect to $\{u^1_i, u^2_i\}_{i=1}^k$, where u^1_i and u^2_i are the derivatives of u_i, $i = 1, 2, \ldots, k$.

Proof. Let R be a trapezoid representation of G. In order to prove that the graph $G^\#(U)$ constructed by Algorithm Split-U is a permutation graph, we will construct from R a permutation representation $R^\#(U)$ of $G^\#(U)$. To this end, we will construct sequentially, for every $i = 1, 2, \ldots, k$, a standard trapezoid representation of H_{i-1} with respect to u_i, in which all derivatives u^1_i, u^2_i, $1 \leq j \leq i - 1$, are represented by trivial trapezoids, i.e., lines.

Let $u = u_1$. If R is not a standard representation with respect to u, we construct first from R a trapezoid representation R' of G that satisfies the first condition of Definition 14. Then, we construct from R' a trapezoid representation R'' of G that satisfies also the second condition of Definition 14; i.e., R'' is a standard trapezoid representation R' of G with respect to u.

For the sake of presentation, we divide the proof of the theorem into several parts.

Properties of the representation R. Let V_i be the master component of u that corresponds to δ_u. By possibly performing a vertical axis flipping of R, we may assume without loss of generality that $R(V_i) \ll T_u$. Furthermore, the sets $N_0(u), N_1(u), N_2(u)$, and $N_{12}(u)$ coincide by Corollary 11 with the sets $N_0(u, R)$, $N_1(u, R)$, $N_2(u, R)$, and $N_{12}(u, R)$, respectively. Recall that, by Definition 7, $D_1(u, R)$ and $D_2(u, R)$ denote the sets of trapezoids of R that lie completely to the left and to the right of T_u in R, respectively.

Let p_x and q_x be the endpoints on L_1 and L_2, respectively, of the left line $l(T_x)$ of an arbitrary trapezoid T_x in R. Suppose that $N_0(u) \cup N_2(u) \neq \emptyset$. Let p_v and q_w be the leftmost endpoints on L_1 and L_2, respectively, of the trapezoids of $N_0(u) \cup N_2(u)$, and suppose that $p_v < q_v$ and $q_w < q_w$; cf. Figure 3(a). Note that, possibly, $v = w$. Then, all vertices x for which T_x has an endpoint between p_v and q_w on L_1 (resp., between q_v and q_w on L_2) and x are adjacent to u. Indeed, suppose otherwise that $T_x \cap T_u = \emptyset$ for such a vertex x. Then, $T_x \ll T_u$, i.e., $x \in D_1(u, R)$, since T_x has an endpoint to the left of T_u in R. Furthermore, since $T_v \cap T_u \neq \emptyset$ (resp., $T_w \cap T_u \neq \emptyset$), it follows that $T_x \cap T_v \neq \emptyset$ (resp., $T_x \cap T_w \neq \emptyset$). However, since $x \in D_1(u, R)$, it follows that $v \in N_1(u, R) \cup N_{12}(u, R) = N_1(u) \cup N_{12}(u)$ (resp., $w \in N_1(u, R) \cup N_{12}(u, R) = N_1(u) \cup N_{12}(u)$), which is a contradiction.

Consider now a vertex $z \in N_1(u) \cup N_{12}(u)$ with $l(T_z) \ll l(T_u)$, where $p_v < p_z < q_z$ (cf. the vertices z_1 and z_2 in Figure 3(a)). Then, $q_z < q_w$. Indeed, suppose otherwise that $q_w < q_z$ (recall that all endpoints are assumed to be distinct). Then, since $z \in N_1(u) \cup N_{12}(u)$, there exists a vertex $x \in D_1(u, R)$, i.e., with $T_x \ll T_u$, such that $T_z \cap T_x \neq \emptyset$. Since $v, w \in N_0(u) \cup N_2(u)$, it follows that $T_v \cap T_u = \emptyset$ and $T_w \cap T_u = \emptyset$, and thus, $T_x \ll T_v$ and $T_x \ll T_w$. Therefore, since $p_v < p_z$ and
Fig. 3. The movement of the left line \(l(T_u)\) of the trapezoid \(T_u\), in order to construct a standard trapezoid representation with respect to \(u\).

\(q_w < q_z\), we obtain that \(T_x \prec_R T_z\), and thus, \(T_z \cap T_x = \emptyset\), which is a contradiction. It follows that \(q_z < q_w\). Moreover, \(z\) is adjacent to all vertices \(x\) in \(G\) whose trapezoid \(T_x\) has an endpoint on \(L_1\) between \(p_v\) and \(p_z\), including \(p_v\). Indeed, otherwise, \(T_x \prec_R T_z\), and thus, \(T_x \prec_R T_u\), since \(l(T_z) \prec_R l(T_u)\). This is, however, a contradiction, since \(x \in N(u)\), as we have proved above. Similarly, if \(q_w < q_z < q_u\), then \(p_z < p_v\) and \(z\) is adjacent to all vertices \(x\) in \(G\) whose trapezoid \(T_x\) has an endpoint on \(L_2\) between \(q_w\) and \(q_z\), including \(q_w\) (cf. vertex \(z'\) in Figure 3(a)).

Construction of the representation \(R'\). We now construct from \(R\) a new trapezoid representation \(R'\) of \(G\) as follows. First, for all vertices \(z \in N_1(u) \cup N_{12}(u)\) with \(l(T_z) \prec_R l(T_u)\) for which \(p_v < p_z < p_u\) (and thus \(q_z < q_w\)), we move the endpoint \(p_z\) of \(l(T_z)\) directly before \(p_v\) on \(L_1\) (cf. the vertices \(z_1\) and \(z_2\) in Figures 3(a) and 3(b)). Then, for all vertices \(z' \in N_1(u) \cup N_{12}(u)\) with \(l(T_{z'}) \prec_R l(T_u)\) for which \(q_w < q_{z'} < q_u\) (and thus \(p_z < p_v\)), we move the endpoint \(q_{z'}\) of \(l(T_{z'})\) directly before \(q_w\) on \(L_2\) (cf. vertex \(z'\) in Figures 3(a) and 3(b)). During the movement of all these lines \(l(T_z)\) (resp., \(l(T_{z'})\)), we keep the same relative positions of their endpoints \(p_z\) on \(L_1\) (resp., \(q_{z'}\) on \(L_2\)) as in \(R\), and thus we introduce no new line intersection among the lines of the trapezoids of \(G\). Since all these vertices \(z\) (resp., \(z'\)) are adjacent to all vertices \(x\) of \(G\) whose trapezoid \(T_x\) has an endpoint on \(L_1\) (resp., \(L_2\)) between \(p_v\) and \(p_z\), including \(p_v\) (resp., between \(q_w\) and \(q_z\), including \(q_w\)), these movements do not remove any adjacency from and do not add any new adjacency to \(G\).

Finally, we move both endpoints \(p_u\) and \(q_u\) of \(l(T_u)\) directly before \(p_v\) and \(q_w\) on \(L_1\) and \(L_2\), respectively. Since \(u\) is adjacent to all vertices \(x\) for which \(T_x\) has an endpoint between \(p_v\) and \(p_u\) on \(L_1\), or between \(q_w\) and \(q_u\) on \(L_2\) in \(R\), the resulting representation \(R'\) is a trapezoid representation of \(G\), in which the first condition of Definition 14 is satisfied. Since we moved all lines \(l(T_z)\) and \(l(T_{z'})\) to the left of \(T_v\) and \(T_u\), \(R'\) has no additional line intersections than \(R\). Moreover, note that for any line intersection of two lines \(a\) and \(b\) in \(R'\), the relative position of the endpoints of \(a\) and \(b\) on \(L_1\) and \(L_2\) remains the same as in \(R\). In the case where \(p_v > p_u\) (resp., \(q_w > q_u\)), in the above construction we replace \(p_v\) by \(p_u\) (resp., \(q_w\) by \(q_u\)), while in
the case where \(N_0(u) \cup N_2(u) = \emptyset \), we define \(R' = R \). An example of the construction of \(R' \) is given in Figure 3. In this example, \(v \in N_0(u) \), \(w \in N_2(u) \), \(z_1, z' \in N_1(u) \), and \(z_2 \in N_{12}(u) \).

Construction of the representation \(R'' \). If \(R' \) is not a standard trapezoid representation with respect to \(u \), then we move \(r(T_u) \) to the right (similarly to the above), thus obtaining a trapezoid representation \(R'' \) of \(G \), in which the second condition of Definition 14 is satisfied. Since during the construction of \(R'' \) from \(R' \) only the line \(r(T_u) \) and other lines that lie completely to the right of \(r(T_u) \) are moved to the right, the first condition of Definition 14 is satisfied for \(R'' \) as well. Thus, \(R'' \) is a standard representation of \(G \) with respect to \(u \). Similarly to \(R' \), \(R'' \) has no additional line intersections than \(R \). Moreover, for any line intersection of two lines \(a \) and \(b \) in \(R'' \), the relative position of the endpoints of \(a \) and \(b \) on \(L_1 \) and \(L_2 \) remains the same as in \(R \).

Splitting of vertex \(u \). Since \(R'' \) is standard with respect to \(u \), the left line \(l(T_u) \) of \(T_u \) in \(R'' \) intersects exactly with those trapezoids \(T_z \) for which \(z \in N_1(u) \cup N_{12}(u) \). On the other hand, the right line \(r(T_u) \) of \(T_u \) in \(R'' \) intersects exactly with those trapezoids \(T_z \) for which \(z \in N_2(u) \cup N_{12}(u) \). Thus, if we replace in \(R'' \) the trapezoid \(T_u \) by the two trivial trapezoids (lines) \(l(T_u) \) and \(r(T_u) \), we obtain a trapezoid representation \(R^\#(u) \) of the graph \(G^\#(u) \) defined in Definition 13.

Now consider a vertex \(v \in \{u_2, u_3, \ldots, u_k\} \). Recall by the assumption in the statement of the theorem that \(\delta^*_v \neq \emptyset \), \(N_1(v) \setminus U \neq \emptyset \), and \(N_2(v) \setminus U \neq \emptyset \) in \(G \) (before the splitting of vertex \(u \)). We prove in the next claim that the same conditions on \(v \) also remain true in the trapezoid graph \(G^\#(u) \) (after the splitting of vertex \(u \), and thus the above construction can be iteratively applied to eventually split all vertices of \(U \).

Claim 1. Let \(v \in \{u_2, u_3, \ldots, u_k\} \). Then, in \(G^\#(u) \) (i.e., after the splitting of \(u = u_1 \)), it remains \(\delta^*_v \neq \emptyset \), \(N_1(v) \setminus U \neq \emptyset \), and \(N_2(v) \setminus U \neq \emptyset \).

Proof of Claim 1. Let \(V_i \) and \(V_j \) be the components that correspond to \(\delta_v \) and \(\delta^*_v \), respectively (before the vertex splitting of \(u \)). By possibly performing a vertical axis flipping of \(R'' \), we may assume without loss of generality that \(R''(V_i) \ll_{R''} T_v \), and thus Corollary 11 implies that \(N_1(v) = N_1(v, R'') \) and \(N_2(v) = N_2(v, R'') \). Since by assumption \(N_1(v) \setminus U \neq \emptyset \) and \(N_2(v) \setminus U \neq \emptyset \) before the splitting of \(u \), there exist vertices \(x_v \in N_1(v) = N_1(v, R'') \) and \(y_v \in N_2(v) = N_2(v, R'') \) such that \(x_v, y_v \notin U \).

That is, the trapezoid \(T_{x_v} \) is adjacent to the trapezoids to the left (but not to the right) of \(T_v \), and the trapezoid \(T_{y_v} \) is adjacent to the trapezoids to the right (but not to the left) of \(T_v \). Furthermore, since \(x_v, y_v \notin U \), the trapezoids \(T_{x_v} \) and \(T_{y_v} \) are never split during the execution of Algorithm Split-U. Thus, in particular, \(T_{x_v} \) and \(T_{y_v} \) remain unchanged in both \(R'' \) and \(R^\#(u) \), i.e., both before and after the splitting of vertex \(u \).

Now let \(u_t \) and \(u_r \) be the two derivatives of vertex \(u \) which correspond to the lines \(l(T_u) \) and \(r(T_u) \) of \(T_u \), respectively. Suppose first that \(v \in N(u) \) (before the splitting of \(u \)). Then, in \(R^\#(u) \), each of the lines of \(u_t \) and \(u_r \) either intersects \(T_v \) or lies to the left/right of \(T_v \). In both cases, the trapezoid \(T_{x_v} \) remains adjacent to the trapezoids to the left (but not to the right) of \(T_v \) in \(R^\#(u) \), and the trapezoid \(T_{y_v} \) remains adjacent to the trapezoids to the right (but not to the left) of \(T_v \) in \(R^\#(u) \).

Suppose now that \(u \notin N(u) \) (before the splitting of \(u \)), i.e., either \(T_u \ll_{R''} T_v \) or \(T_v \ll_{R''} T_u \). Since the two cases are exactly symmetrical, it suffices to consider only the case where \(T_u \ll_{R''} T_v \). In this case, \(u \in N(x_v) \) before the splitting of \(u \) if and
only if \(u_r \in N(x_v) \) after the splitting of \(u \). Furthermore, since \(y_v \in N_2(v, R^0) \), it follows that \(u \notin N(y_v) \) before the splitting of \(u \) and also that \(u_l, u_r \notin N(y_v) \) after the splitting of \(u \). Thus, the trapezoid \(T_{x_v} \) remains adjacent to the trapezoids to the left (but not to the right) of \(T_{x_v} \) in \(R^0(u) \), and the trapezoid \(T_{y_v} \) remains adjacent to the trapezoids to the right (but not to the left) of \(T_{y_v} \) in \(R^0(u) \).

Summarizing, in both cases where \(v \in N(u) \) and \(v \notin N(u) \) before the splitting of \(u \), it follows that \(x_v \in N_1(v, R^0(u)) \) and \(y_v \in N_2(v, R^0(u)) \) after the splitting of \(u \). Therefore, since \(x_v, y_v \notin U \), it follows that \(N_1(v, R^0(u)) \setminus U \neq \emptyset \) and \(N_2(v, R^0(u)) \setminus U \neq \emptyset \) after the splitting of \(u \). Furthermore, since \(N_1(v, R^0(u)) \neq \emptyset \) and \(N_2(v, R^0(u)) \neq \emptyset \), Lemma 12 implies that \(\delta'_v \neq \emptyset \) after the splitting of \(u \). Therefore, Corollary 11 implies that the sets \(N_1(v) \) and \(N_2(v) \) are the same as the sets \(N_1(v, R^0(u)) \) and \(N_2(v, R^0(u)) \), and thus also \(N_1(v) \setminus U \neq \emptyset \) and \(N_2(v) \setminus U \neq \emptyset \) after the splitting of \(u \). Summarizing, after the splitting of \(u = u_1 \), we have that \(\delta'_v \neq \emptyset \), \(N_1(v) \setminus U \neq \emptyset \), and \(N_2(v) \setminus U \neq \emptyset \) for every \(v \in \{u_2, u_3, \ldots, u_k\} \).

Iterative splitting of all the vertices of the set \(U \). Due to Claim 1, we can iteratively apply the above construction for all \(u = u_i \), where \(i = 2, 3, \ldots, k \); i.e., we can split sequentially all vertices of \(U \) exactly once. Then, after \(k \) vertex splittings, and after removing from the resulting graph the vertices of \(U = V(G) \setminus U \), we obtain a trapezoid representation \(R^0(U) \) of the graph \(G^0(U) \) returned by Algorithm Split-\(U \).

Since every trapezoid \(T_{x_v} \), \(u \in U \), has been replaced by two trivial trapezoids (i.e., lines) in \(R^0(U) \), it follows that \(G^0(U) \) is a permutation graph with \(2k \) vertices, and \(R^0(U) \) is a permutation representation of \(G^0(U) \).

Acyclicity of the permutation graph \(G^0(U) \). Finally, suppose that \(R \) is an acyclic trapezoid representation of \(G \). According to Definition 2, let \(P \) be the permutation graph with \(2n \) vertices corresponding to the left and right lines of the trapezoids in \(R \), let \(R_P \) be the permutation representation of \(P \) induced by \(R \), and let \(\{u^1_i, u^2_i\} \) be the vertices of \(P \) that correspond to the same vertex \(u_i \) of \(G \), \(i = 1, 2, \ldots, n \). Since \(R \) is an acyclic trapezoid representation of \(G \), it follows by Definition 2 that \(R_P \) is an acyclic permutation representation with respect to \(\{u^1_i, u^2_i\}^n_{i=1} \). That is, the simple directed graph \(F_{R_P} \) obtained (according to Definition 1) by merging \(u^1_i \) and \(u^2_i \) in \(P \) into a single vertex \(u_i \), for every \(i = 1, 2, \ldots, n \), has no directed cycle.

Since, during the construction of \(R^0(U) \), the trapezoid representation obtained after every vertex splitting has no additional line intersections than the previous one, it follows that \(R^0(U) \) has no additional line intersections than \(R \). Moreover, for any line intersection of two lines \(a \) and \(b \) in \(R^0(U) \), the relative position of the endpoints of \(a \) and \(b \) on \(L_1 \) and \(L_2 \) remains the same as in \(R \). Thus, the simple directed graph \(F_{R^0(U)} \) obtained (according to Definition 1) by merging \(u^1_i \) and \(u^2_i \) in \(G^0(U) \) into a single vertex \(u_i \), for every \(i = 1, 2, \ldots, k \), is a subdigraph of \(F_{R_P} \). Therefore, since \(F_{R_P} \) has no directed cycle, \(F_{R^0(U)} \) has no directed cycle as well; i.e., \(G^0(U) \) is an acyclic permutation graph with respect to \(\{u^1_i, u^2_i\}^k_{i=1} \). This completes the proof of the theorem.

3. The recognition of bounded tolerance graphs. In this section we provide a reduction from the monotone-Not-All-Equal-3-SAT (monotone-NAE-3-SAT) problem to the problem of recognizing whether a given graph is a bounded tolerance graph. A boolean formula \(\phi \) is called monotone if no variable in \(\phi \) is negated. Given a monotone boolean formula \(\phi \) in conjunctive normal form with three literals in each clause (3-CNF), \(\phi \) is \textit{NAE-satisfiable} if there is a truth assignment of \(\phi \) such that every clause contains at least one true literal and at least one false one. The problem
of deciding whether a given 3-CNF formula ϕ is NAE-satisfiable is known to be NP-complete [30]. In the next lemma we provide a reduction of the NAE-3-SAT problem to the monotone-NAE-3-SAT problem, which proves that monotone-NAE-3-SAT is NP-complete.

Lemma 16. The monotone-NAE-3-SAT problem is NP-complete.

Proof. To reduce NAE-3-SAT to monotone-NAE-3-SAT, first consider a 3-CNF formula ϕ (the input of NAE-3-SAT). We construct from ϕ a monotone 3-CNF formula ϕ' as follows. Replace each appearance of a variable x in ϕ with two variables x_0 and x_1 (depending on whether x appears negated or not), add variables x_2, x_3, x_4, and add the clauses $(x_0 \lor x_1 \lor x_2), (x_0 \lor x_1 \lor x_3), (x_0 \lor x_1 \lor x_4)$, and $(x_2 \lor x_3 \lor x_4)$. Then, it is easy to check that the constructed 3-CNF formula ϕ' is monotone (i.e., no variable appears negated in ϕ') and that ϕ' is NAE-satisfiable if and only if ϕ is NAE-satisfiable. \[\square\]

We can assume in the following without loss of generality that each clause has three distinct literals, i.e., variables. Given a monotone 3-CNF formula ϕ, we construct in polynomial time a trapezoid graph H_ϕ such that H_ϕ is a bounded tolerance graph if and only if ϕ is NAE-satisfiable. To this end, we first construct a permutation graph P_ϕ and a trapezoid graph G_ϕ.

3.1. The permutation graph P_ϕ.

Consider a monotone 3-CNF formula $\phi = \alpha_1 \land \alpha_2 \land \cdots \land \alpha_k$ with k clauses and n boolean variables x_1, x_2, \ldots, x_n, such that $\alpha_i = (x_{r_{i,1}} \lor x_{r_{i,2}} \lor x_{r_{i,3}})$ for $i = 1, 2, \ldots, k$, where $1 \leq r_{i,1} < r_{i,2} < r_{i,3} \leq n$. We construct the permutation graph P_ϕ, along with a permutation representation R_ϕ of P_ϕ, as follows. Let L_1 and L_2 be two parallel lines, and let $\theta(\ell)$ denote the angle of the line ℓ with L_2 in R_ϕ. For every clause α_i, $i = 1, 2, \ldots, k$, we associate with each of the literals, i.e., variables, $x_{r_{i,1}}, x_{r_{i,2}},$ and $x_{r_{i,3}}$ a pair of intersecting lines with endpoints on L_1 and L_2. Namely, we associate with the variable $x_{r_{i,1}}$ the pair $\{e_i, c_i\}$, with $x_{r_{i,2}}$ the pair $\{d_i, f_i\}$, and with $x_{r_{i,3}}$ the pair $\{a_i, b_i\}$, respectively, such that $\theta(a_i) > \theta(c_i), \theta(e_i) > \theta(b_i), \theta(d_i) > \theta(f_i)$ and such that the lines a_i, c_i lie completely to the left of e_i, b_i in R_ϕ, and c_i, b_i lie completely to the left of d_i, f_i in R_ϕ, as illustrated in Figure 4. Denote the lines that correspond to the variable $x_{r_{i,j}}, j = 1, 2, 3,$ by $\ell^1_{i,j}$ and $\ell^2_{i,j}$, respectively, such that $\theta(\ell^1_{i,j}) > \theta(\ell^2_{i,j})$. That is, $(\ell^1_{i,1}, \ell^2_{i,1}) = (a_i, c_i)$, $(\ell^1_{i,2}, \ell^2_{i,2}) = (e_i, b_i)$, and $(\ell^1_{i,3}, \ell^2_{i,3}) = (d_i, f_i)$. Note that no line of a pair $\{\ell^1_{i,j}, \ell^2_{i,j}\}$ intersects with a line of another pair $\{\ell^1_{i',j'}, \ell^2_{i',j'}\}$.

![Figure 4. The six lines of the permutation graph P_ϕ, which correspond to the clause $\alpha_i = (x_{r_{i,1}} \lor x_{r_{i,2}} \lor x_{r_{i,3}})$ of the boolean formula ϕ.](image)

Denote by $S_p, p = 1, 2, \ldots, n$, the set of pairs $\{\ell^1_{i,j}, \ell^2_{i,j}\}$ that correspond to the variable x_p, i.e., $r_{i,j} = p$. We order the pairs $\{\ell^1_{i,j}, \ell^2_{i,j}\}$ such that any pair of S_p lies completely to the left of any pair of $S_{p'}$ whenever $p_1 < p_2$, while the pairs that belong to the same set S_p are ordered arbitrarily. For two consecutive pairs $\{\ell^1_{i,j}, \ell^2_{i,j}\}$ and $\{\ell^1_{i',j'}, \ell^2_{i',j'}\}$ in S_p, where $\{\ell^1_{i,j}, \ell^2_{i,j}\}$ lies to the left of $\{\ell^1_{i',j'}, \ell^2_{i',j'}\}$, we add a
pair \(\{u_{i,j}^{x,j'}, v_{i,j}^{x,j'}\}\) of parallel lines that intersect both \(\ell_{i,j}^1\) and \(\ell_{i,j}^2\), but no other line. Note that \(\theta(\ell_{i,j}^1) > \theta(u_{i,j}^{x,j'})\) and \(\theta(\ell_{i,j}^2) > \theta(v_{i,j}^{x,j'})\), while \(\theta(u_{i,j}^{x,j'}) = \theta(v_{i,j}^{x,j'})\). This completes the construction. Denote the resulting permutation graph by \(P_\phi\), and the corresponding permutation representation of \(P_\phi\) by \(R_P\). Observe that \(P_\phi\) has \(n\) connected components, which are called blocks, one for each variable \(x_1, x_2, \ldots, x_n\). An example of the construction of \(P_\phi\) and \(R_P\) from \(\phi\) with \(k = 3\) clauses and \(n = 4\) variables is illustrated in Figure 5. In this figure, the lines \(u_{i,j}^{x,j'}\) and \(v_{i,j}^{x,j'}\) are drawn in bold.

The formula \(\phi\) has \(3k\) literals, and thus the permutation graph \(P_\phi\) has \(6k\) lines \(\ell_{i,j}^1, \ell_{i,j}^2\) in \(R_P\), one pair for each literal. Furthermore, two lines \(u_{i,j}^{x,j'}, v_{i,j}^{x,j'}\) correspond to each pair of consecutive pairs \(\{\ell_{i,j}^1, \ell_{i,j}^2\}\) and \(\{\ell_{i',j'}^1, \ell_{i',j'}^2\}\) in \(R_P\), except for the case where these pairs of lines belong to different variables, i.e., when \(r_{i,j} \neq r_{i',j'}\). Therefore, since \(\phi\) has \(n\) variables, there are \(2(3k - n) = 6k - 2n\) lines \(u_{i,j}^{x,j'}, v_{i,j}^{x,j'}\) in \(R_P\). Thus, \(R_P\) has in total \(12k - 2n\) lines; i.e., \(P_\phi\) has \(12k - 2n\) vertices. In the example of Figure 5, \(k = 3\), \(n = 4\), and thus, \(P_\phi\) has 28 vertices.

![The permutation representation \(R_P\) of the permutation graph \(P_\phi\) for \(\phi = \alpha_1 \land \alpha_2 \land \alpha_3 = (x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4)\).](image)

Let \(m = 6k - n\), where \(2m\) is the number of vertices in \(P_\phi\). We group the lines of \(R_P\), i.e., the vertices of \(P_\phi\), into pairs \(\{u_{i,j}^1, u_{i,j}^2\}\) as follows. For every clause \(\alpha_i, i = 1, 2, \ldots, k\), we group the lines \(a_i, b_i, c_i, d_i, e_i, f_i\) into the three pairs \(\{a_i, b_i\}, \{c_i, d_i\}, \{e_i, f_i\}\). The remaining lines are grouped naturally according to the construction; namely, every two lines \(u_{i,j}^{x,j'}, v_{i,j}^{x,j'}\) constitute a pair.

Lemma 17. If the permutation graph \(P_\phi\) is acyclic with respect to \(\{u_{i,j}^1, u_{i,j}^2\}\) then the formula \(\phi\) is NAE-satisfiable.

Proof. Suppose that \(P_\phi\) is acyclic with respect to \(\{u_{i,j}^1, u_{i,j}^2\}\), and let \(R_0\) be an acyclic permutation representation of \(P_\phi\) with respect to \(\{u_{i,j}^1, u_{i,j}^2\}\). Then, in particular, \(R_0\) is acyclic with respect to \(\{a_i, b_i\}, \{c_i, d_i\}, \{e_i, f_i\}\) for every \(i = 1, 2, \ldots, k\). We will construct a truth assignment of the variables \(x_1, x_2, \ldots, x_n\) that NAE-satisfies \(\phi\), as follows. For every \(i = 1, 2, \ldots, k\), we define \(x_{r_{i,1}} = 1\) if and only if \(\theta(c_i) < \theta(a_i)\) in \(R_0\), \(x_{r_{i,2}} = 1\) if and only if \(\theta(b_i) < \theta(e_i)\) in \(R_0\), and \(x_{r_{i,3}} = 1\) if and only if \(\theta(f_i) < \theta(d_i)\) in \(R_0\).

Note that this assignment is consistent; that is, all variables \(x_{r_{i,j}}\) that correspond to the same \(x_k\) are assigned the same value. Indeed, every block (i.e., connected component) of the permutation graph \(P_\phi\) is a very particular graph, namely, an odd path with pendant vertices on alternating vertices and duplicating the other vertices. It is easy to see that each such connected component of \(P_\phi\) has exactly two permutation representations (related by the horizontal axis flipping), where these representations correspond to the values 0 and 1 of \(x_k\) in the assignment, respectively. In other words, the existence of the lines \(u_{i,j}^{x,j'}, v_{i,j}^{x,j'}\) (cf. the bold lines in Figure 6(a)) forces all pairs.
be the subgraph induced by the vertices of crossing lines R_0.

Now, we show that in each clause α_i, $i = 1, 2, \ldots, k$, there exists at least one true and at least one false variable. For an arbitrary index $i \in \{1, 2, \ldots, k\}$, let P_i be the subgraph induced by the vertices $a_i, b_i, c_i, d_i, e_i, f_i$ in P_ϕ, and let R_i be the permutation representation of P_i, which is induced by R_0. According to Definition 1, we construct the simple directed graph F_{R_i} by merging into a single vertex each of the pairs $\{a_i, b_i\}$, $\{c_i, d_i\}$, and $\{e_i, f_i\}$ of vertices of P_i. The arc directions of F_{R_i} are implied by the corresponding directions in Φ_{R_0} (or, equivalently, in Φ_{R_0}). Then, since R_0 is acyclic with respect to $\{a_i, b_i\} \cup \{c_i, d_i\} \cup \{e_i, f_i\}$, so is R_i. Thus, it follows by Definition 1 that F_{R_i} has no directed cycle. Therefore, it does not hold simultaneously that $c_i a_i, b_i e_i, f_i d_i \in \Phi_{R_0}$ or that $a_i c_i, e_i b_i, d_i f_i \in \Phi_{R_0}$. That is, it does not hold simultaneously that $\theta(c_i) < \theta(a_i)$, $\theta(b_i) < \theta(e_i)$, and $\theta(f_i) < \theta(d_i)$ or that $\theta(a_i) < \theta(c_i)$, $\theta(e_i) < \theta(b_i)$, and $\theta(d_i) < \theta(f_i)$ in R_0, respectively. Then, by the definition of the above truth assignment, it does not hold simultaneously that $x_{r_{i,1}} = x_{r_{i,2}} = x_{r_{i,3}} = 1$ or $x_{r_{i,1}} = x_{r_{i,2}} = x_{r_{i,3}} = 0$, and therefore, the clause $\alpha_i = (x_{r_{i,1}} \lor x_{r_{i,2}} \lor x_{r_{i,3}})$ is NAE-satisfied. Finally, since this holds for every $i = 1, 2, \ldots, k$, ϕ is NAE-satisfiable.

Note here that the converse of Lemma 17 is also true; i.e., if the formula ϕ is NAE-satisfiable, then the permutation graph P_ϕ is acyclic with respect to $\{u_i^1, u_i^2\}_{i=1}^m$ (this can be easily proved, similarly to the necessity part of the proof of Theorem 19 below). That is, the permutation graph P_ϕ is acyclic with respect to $\{u_i^1, u_i^2\}_{i=1}^m$ if and only if the monotone formula ϕ is NAE-satisfiable. Therefore, since the monotone-NAE-3SAT problem is NP-complete by Lemma 16, it follows that, given a permutation graph

![Figure 6](image-url)

Fig. 6. The NAE-satisfying truth assignment $(x_1, x_2, x_3, x_4) = (1, 1, 0, 0)$ of the formula ϕ of Figure 5: (a) an acyclic permutation representation R_0 of P_ϕ and (b) the corresponding transitive orientation Φ_{R_0} of P_ϕ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
P with vertices \(\{u_1^1, u_2^1, \ldots, u_m^1, u_m^2\} \), it is NP-hard to decide whether \(P \) is acyclic with respect to \(\{u_1^1, u_2^1\}_i=1^m \).

For the formula \(\phi \) of Figure 5, an example of an acyclic permutation representation \(R_0 \) of \(P_\phi \) with respect to \(\{u_1^1, u_2^1\}_i=1^m \), along with the corresponding transitive orientation \(\Phi_{R_0} \) of \(P_\phi \), is illustrated in Figure 6. This transitive orientation corresponds to the NAE-satisfying truth assignment \((x_1, x_2, x_3, x_4) = (1, 1, 0, 0) \) of \(\phi \). Similarly to Figure 5, the lines \(u_{i,j}^1 \) and \(u_{i,j}^2 \) are drawn dashed in Figure 6(a). Furthermore, for better visibility, the vertices that correspond to these lines are grouped in shadowed ellipses in Figure 6(b), while the arcs incident to them are drawn dashed.

3.2. The trapezoid graphs \(G_\phi \) and \(H_\phi \).

Let \(\{u_1^1, u_2^1\}_i=1^m \) be the pairs of vertices in the constructed permutation graph \(P_\phi \), and let \(R_P \) be its permutation representation. We now construct from \(P_\phi \) the trapezoid graph \(G_\phi \) with \(m \) vertices \(\{u_1, u_2, \ldots, u_m\} \), as follows. We replace in the permutation representation \(R_P \) for every \(i = 1, 2, \ldots, m \) the lines \(u_i^1 \) and \(u_i^2 \) by the trapezoid \(T_{u_i} \), which has \(u_i^1 \) and \(u_i^2 \) as its left and right lines, respectively. Let \(R_G \) be the resulting trapezoid representation of \(G_\phi \).

Finally, we construct the trapezoid graph \(H_\phi \) with \(7m \) vertices, by adding to every trapezoid \(T_{u_i} \), \(i = 1, 2, \ldots, m \), six parallelograms \(T_{u_{i,1}}, T_{u_{i,2}}, \ldots, T_{u_{i,6}} \) in the trapezoid representation \(R_G \), as follows. Let \(\varepsilon \) be the smallest distance in \(R_G \) between two different endpoints on \(L_1 \), or on \(L_2 \). The (right, resp., left) line of \(T_{u_{i,1}} \) lies to the right (resp., left) of \(u_i^1 \) and is parallel to it at distance \(\frac{\varepsilon}{2} \). The right (resp., left) line of \(T_{u_{i,2}} \) lies to the left of \(u_i^1 \) and is parallel to it at distance \(\frac{\varepsilon}{3} \) (resp., \(\frac{2\varepsilon}{3} \)). Moreover, the right (resp., left) line of \(T_{u_{i,3}} \) lies to the left of \(u_i^1 \) and is parallel to it at distance \(\frac{\varepsilon}{4} \) (resp., \(\frac{3\varepsilon}{4} \)). Similarly, the left (resp., right) line of \(T_{u_{i,4}} \) lies to the left (resp., right) of \(u_i^1 \) and is parallel to it at distance \(\frac{\varepsilon}{5} \). The left (resp., right) line of \(T_{u_{i,5}} \) lies to the right of \(u_i^1 \) and is parallel to it at distance \(\frac{2\varepsilon}{5} \) (resp., \(\frac{3\varepsilon}{5} \)). Finally, the right (resp., left) line of \(T_{u_{i,6}} \) lies to the right of \(u_i^1 \) and is parallel to it at distance \(\frac{3\varepsilon}{5} \) (resp., \(\frac{4\varepsilon}{5} \)), as illustrated in Figure 7.

After adding the parallelograms \(T_{u_{i,1}}, T_{u_{i,2}}, \ldots, T_{u_{i,6}} \) to a trapezoid \(T_{u_i} \), we update the smallest distance \(\varepsilon \) between two different endpoints on \(L_1 \), or on \(L_2 \) in the resulting representation, and we continue the construction iteratively for all \(i = 2, \ldots, m \). Denote by \(H_\phi \) the resulting trapezoid graph with \(7m \) vertices and by \(R_H \) the corresponding trapezoid representation. Note that in \(R_H \), between the endpoints of the parallelograms \(T_{u_{i,1}}, T_{u_{i,2}}, \) and \(T_{u_{i,3}} \) (resp., \(T_{u_{i,4}}, T_{u_{i,5}}, \) and \(T_{u_{i,6}} \)) on \(L_1 \) and \(L_2 \), there are no other endpoints of \(H_\phi \), except those of \(u_i^1 \) (resp., \(u_i^2 \)) for every \(i = 1, 2, \ldots, m \). The next lemma is crucial in the proof of Theorem 19.
Lemma 18. In the trapezoid graph H_ϕ, let $U = \{u_1, u_2, \ldots, u_m\}$. Then $\delta_{u_i} \neq \emptyset$, $N_1(u_i) \cap U \neq \emptyset$, and $N_2(u_i) \cap U \neq \emptyset$ for every $i = 1, 2, \ldots, m$.

Proof. Consider the trapezoid representation R_H of H_ϕ. Let $i \in \{1, 2, \ldots, m\}$. Recall by Definition 7 that $D_1(u_i, R_H)$ (resp., $D_2(u_i, R_H)$) denotes the set of trapezoids of H_ϕ that lie completely to the left (resp., to the right) of T_{u_i} in R_H. In particular, $T_{u_{i,2}}, T_{u_{i,3}} \in D_1(u_i, R_H)$ and $T_{u_{i,5}}, T_{u_{i,6}} \in D_2(u_i, R_H)$. Furthermore, recall by Definition 7 that $N_1(u_i, R_H)$ are the neighbors of u_i that are adjacent to $D_1(u_i, R_H)$ but not to $D_2(u_i, R_H)$, while $N_2(u_i, R_H)$ are the neighbors of u_i that are adjacent to $D_2(u_i, R_H)$ but not to $D_1(u_i, R_H)$. In particular, $u_{i,1} \in N_1(u_i, R_H)$ and $u_{i,4} \in N_2(u_i, R_H)$. Therefore, since $u_{i,1}, u_{i,4} \notin U$, it follows that $N_1(u_i, R_H) \cap U \neq \emptyset$ and $N_2(u_i, R_H) \cap U \neq \emptyset$. Furthermore, since $N_1(u_i, R_H) \cap U \neq \emptyset$ and $N_2(u_i, R_H) \cap U \neq \emptyset$, Lemma 12 implies that $\delta_{u_i} \neq \emptyset$.

By the construction of R_H, note that $T_{u_{i,2}} \cup T_{u_{i,3}}$ (resp., $T_{u_{i,5}} \cup T_{u_{i,6}}$) is the rightmost (resp., leftmost) connected component of $D_1(u_i, R_H)$ (resp., $D_2(u_i, R_H)$). Therefore $N(V_k) \subseteq N(\{u_{i,2}, u_{i,3}\})$ (resp., $N(V_l) \subseteq N(\{u_{i,5}, u_{i,6}\})$) for every connected component V_k (resp., V_l) of $D_1(u_i, R_H)$ (resp., $D_2(u_i, R_H)$). Let V_p be the master component of u_i that corresponds to δ_{u_i}. Then, either $V_p = \{u_{i,2}, u_{i,3}\}$ or $V_p = \{u_{i,5}, u_{i,6}\}$. In the case where $V_p = \{u_{i,2}, u_{i,3}\}$, Corollary 11 implies that $N_1(u_i) = N_1(u_i, R_H)$ and $N_2(u_i) = N_2(u_i, R_H)$. Thus, since $N_1(u_i, R_H) \cap U \neq \emptyset$ and $N_2(u_i, R_H) \cap U \neq \emptyset$ by the previous paragraph, it follows that $N_1(u_i) \cap U \neq \emptyset$ and $N_2(u_i) \cap U \neq \emptyset$. Similarly, in the case where $V_p = \{u_{i,5}, u_{i,6}\}$, Corollary 11 implies (by performing a vertical axis flipping of R_H) that $N_1(u_i) = N_2(u_i, R_H)$ and $N_2(u_i) = N_1(u_i, R_H)$. Thus, since $N_2(u_i, R_H) \cap U \neq \emptyset$ and $N_1(u_i, R_H) \cap U \neq \emptyset$ by the previous paragraph, it follows that $N_1(u_i) \cap U \neq \emptyset$ and $N_2(u_i) \cap U \neq \emptyset$. Summarizing, $\delta_{u_i} \neq \emptyset$, $N_1(u_i) \cap U \neq \emptyset$, and $N_2(u_i) \cap U \neq \emptyset$ for every $i = 1, 2, \ldots, m$. This completes the proof of the lemma.

Let $i \in \{1, 2, \ldots, m\}$. Note that, by the construction of R_H, the left line $l(T_{u_i})$ (resp., the right line $r(T_{u_i})$) of T_{u_i} intersects in R_H exactly with the trapezoids that intersect $T_{u_{i,2}} \cup T_{u_{i,3}}$ (resp., $T_{u_{i,5}} \cup T_{u_{i,6}}$). That is, the left line $l(T_{u_i})$ intersects exactly with the trapezoids of $N_1(u_i, R_H) \cup N_{12}(u_i, R_H)$, while the right line $r(T_{u_i})$ intersects exactly with the trapezoids of $N_2(u_i, R_H) \cup N_{12}(u_i, R_H)$. Now let V_p be the master component of u_i that corresponds to δ_{u_i} in H_ϕ. Recall by the proof of Lemma 18 that either $V_p = \{u_{i,2}, u_{i,3}\}$ or $V_p = \{u_{i,5}, u_{i,6}\}$, since $\{u_{i,2}, u_{i,3}\}$ and $\{u_{i,5}, u_{i,6}\}$ are the two master components of u_i (i.e., the two maximal connected components of $H_\phi \setminus N[u_i]$). However, since $\delta_{u_i} = V_p$ is an arbitrarily chosen master component of u_i by Definition 9, we can choose $V_p = \{u_{i,2}, u_{i,3}\}$, i.e., $R_H(V_p) \ll R_H T_{u_i}$. Furthermore, since $\delta_{u_i} \neq \emptyset$ by Lemma 18, it follows by Corollary 11 that $N_1(u_i) \cup N_{12}(u_i) = N_1(u_i, R_H) \cup N_{12}(u_i, R_H)$ and that $N_2(u_i) \cup N_{12}(u_i) = N_2(u_i, R_H) \cup N_{12}(u_i, R_H)$. Therefore, the left line $l(T_{u_i})$ of T_{u_i} intersects in R_H exactly with the trapezoids of $N_1(u_i) \cup N_{12}(u_i)$, while the right line $r(T_{u_i})$ intersects exactly with the trapezoids of $N_2(u_i, R_H) \cup N_{12}(u_i, R_H)$. Thus, by Definition 14, R_H is a standard trapezoid representation with respect to u_i.

Theorem 19. The formula ϕ is NAE-satisfiable if and only if the trapezoid graph H_ϕ is a bounded tolerance graph.

Proof. Since a graph is a bounded tolerance graph if and only if it is a parallelogram graph [2, 21], it suffices to prove that ϕ is NAE-satisfiable if and only if the trapezoid graph H_ϕ is a parallelogram graph.

(\Rightarrow) Suppose that H_ϕ is a parallelogram graph, and let $U = \{u_1, u_2, \ldots, u_m\}$. Then, H_ϕ is an acyclic trapezoid graph by Lemma 3. Consider the permutation graph.
will first construct a permutation representation \(R_H \) of \(H_\phi \). Starting with the trapezoid representation \(R_H \) of \(H_\phi \), we obtain by the construction of Theorem 15 a permutation representation \(R_H^\# \) of \(H_\phi^\# \). Note that, since \(R_H \) is a standard trapezoid representation of \(H_\phi \) with respect to every \(u_i \), \(i = 1, 2, \ldots, m \), the line \(u_i^1 \) (resp., \(u_i^2 \)) of \(T_u \) is not moved during the construction of \(R_H^\# \) from \(R_H \) for every \(i = 1, 2, \ldots, m \). Therefore, \(H_\phi^\# \) is \(P_\phi \). On the other hand, since by Lemma 18 \(\delta^*_u \neq \emptyset \), \(N_1(u_i) \setminus U \neq \emptyset \), and \(N_2(u_i) \setminus U \neq \emptyset \) for every vertex \(u_i \in U \), and since \(H_\phi \) is an acyclic permutation graph, Theorem 15 implies that \(H_\phi^\# \) is an acyclic permutation graph with respect to \(\{u_i^1, u_i^2\}_{i=1}^m \). Thus, \(\phi \) is NAE-satisfiable by Lemma 17.

\(\Rightarrow \) Conversely, suppose that \(\phi \) has an NAE-satisfying truth assignment \(\tau \). We will first construct a permutation representation \(R_0 \) of \(P_\phi \) and then two trapezoid representations \(R'_0 \) and \(R''_0 \) of \(G_\phi \) and \(H_\phi \), respectively, as follows. Similarly to the representation \(R_P \), the representation \(R_0 \) has \(n \) blocks, i.e., connected components, one for each variable \(x_1, x_2, \ldots, x_n \). \(R_0 \) is obtained from \(R_P \) by performing a horizontal axis flipping of every block, which corresponds to a variable \(x_p = 0 \) in the truth assignment \(\tau \). Every other block which corresponds to a variable \(x_p = 1 \) in the assignment \(\tau \) remains the same in \(R_0 \) as in \(R_P \). Thus, \(\theta(\ell_{i,j}^1) > \theta(\ell_{i,j}^2) \) if \(x_{r_{i,j}} = 1 \) in \(\tau \), and \(\theta(\ell_{i,j}^1) < \theta(\ell_{i,j}^2) \) if \(x_{r_{i,j}} = 0 \) in \(\tau \) for every pair \(\{\ell_{i,j}^1, \ell_{i,j}^2\} \) of lines in \(R_0 \) (which correspond to the literal \(x_{r_{i,j}} \) of the clause \(\alpha_i \) in \(\phi \)). An example of the construction of this representation \(R_0 \) of \(P_\phi \) for the truth assignment \(\tau = (1, 1, 0, 0) \) is illustrated in Figure 6(a).

Since \(\tau \) is an NAE-satisfying truth assignment of \(\phi \), at least one literal is true and at least one is false in \(\tau \) in every clause \(\alpha_i \), \(i = 1, 2, \ldots, k \). Thus, there are six possible truth assignments for every clause, namely, \((1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 1, 0), (1, 0, 0)\). For the first three, we can assign appropriate angles to the lines \(a_i, b_i, c_i, d_i, e_i, a_{i,j} \), and \(f_i \) in the representation \(R_0 \), such that the relative positions of all endpoints in \(L_1 \) and \(L_2 \) remain unchanged, and such that \(a_i \) is parallel to \(b_i \), \(c_i \) is parallel to \(d_i \), and \(e_i \) is parallel to \(f_i \), as illustrated in Figure 8. The last three truth assignments of \(\alpha_i \) are the complement of the first three. Thus, by performing a horizontal axis flipping of the blocks in Figure 8, to which the lines \(a_i, b_i, c_i, d_i, e_i, a_{i,j} \), and \(f_i \) belong, it is easy to see that for these assignments, we can also assign appropriate angles to these lines in the representation \(R_0 \), such that the relative positions of all endpoints in \(L_1 \) and \(L_2 \) remain unchanged, and such that \(a_i \) is parallel to \(b_i \), \(c_i \) is parallel to \(d_i \), and \(e_i \) is parallel to \(f_i \).

Recall that for every two consecutive pairs \(\{\ell_{i,j}^1, \ell_{i,j}^2\} \) and \(\{\ell_{i,j}^1, \ell_{i,j}^2\} \) of lines in \(R_P \) (resp., \(R_0 \)) which belong to the same block, i.e., where \(r_{i,j} = r_{i,j}' \), there are two parallel lines \(u_{i,j}^1, v_{i,j}^1 \) and \(u_{i,j}^2, v_{i,j}^2 \) that intersect both \(\ell_{i,j}^1 \) and \(\ell_{i,j}^2 \). Thus, after assigning the appropriate angles to the lines \(\{\ell_{i,j}^1, \ell_{i,j}^2\} \), \(i = 1, 2, \ldots, k \), \(j = 1, 2, 3 \), we can clearly assign the appropriate angles to the lines \(u_{i,j}^1, v_{i,j}^1 \) and \(u_{i,j}^2, v_{i,j}^2 \), such that the relative positions of all endpoints in \(L_1 \) and \(L_2 \) remain unchanged, and such that \(u_{i,j}^1 \) remains parallel to \(u_{i,j}^2 \). Summarizing, the lines \(u_i^1 \) and \(u_i^2 \) are parallel in \(R_0 \) for every \(i = 1, 2, \ldots, m \).

We now construct the trapezoid representation \(R'_0 \) of \(G_\phi \) from the permutation representation \(R_0 \) by replacing for every \(i = 1, 2, \ldots, m \) the lines \(u_i^1 \) and \(u_i^2 \) by the trapezoid \(T_u \), which has \(u_i^1 \) and \(u_i^2 \) as its left and right lines, respectively. Since \(R_0 \) is obtained by performing horizontal axis flipping of some blocks of \(R_P \), and then changing the angles of the lines while respecting the relative positions of the endpoints,
R_0' is indeed a trapezoid representation of G_{ϕ} that is different from R_G. Since u^1_i is now parallel to u^2_i for every $i = 1, 2, \ldots, m$, it follows clearly that R_0' is a parallelogram representation, and thus, G_{ϕ} is a parallelogram graph.

Finally, we construct the trapezoid representation R''_0 of H_{ϕ} from R_0', similarly to the construction of R_H from R_G. Namely, we add for every trapezoid $T_{u_{i,1}}, i = 1, 2, \ldots, m$, six parallelograms $T_{u_{i,1}}, T_{u_{i,2}}, \ldots, T_{u_{i,6}}$, resulting in a trapezoid graph with $7m$ vertices. Since in R''_0 the parallelograms $T_{u_{i,1}}, T_{u_{i,2}}, \text{and } T_{u_{i,3}}$ (resp., $T_{u_{i,4}}, T_{u_{i,5}}, \text{and } T_{u_{i,6}}$) are sufficiently close to the left line u^1_i (resp., right line u^2_i) of $T_{u_{i,1}}, i = 1, 2, \ldots, m$, and since between the endpoints of the parallelograms $T_{u_{i,1}}, T_{u_{i,2}}, \text{and } T_{u_{i,3}}$ (resp., $T_{u_{i,4}}, T_{u_{i,5}}, \text{and } T_{u_{i,6}}$) on L_1 and L_2 there are no other endpoints, it follows that R''_0 is indeed a trapezoid representation of H_{ϕ} that is different from R_H. Finally, since R_0' is a parallelogram representation, and since $T_{u_{i,1}}, T_{u_{i,2}}, \ldots, T_{u_{i,6}}, i = 1, 2, \ldots, m$, are all parallelograms, R''_0 is also a parallelogram representation, and thus, H_{ϕ} is a parallelogram graph. \(\square\)

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing bounded tolerance graphs is NP-hard by Theorem 19. Moreover, since the recognition of bounded tolerance graphs lies in NP [17], we can summarize our results as follows.

Theorem 20. It is NP-complete to decide whether a given graph G is a bounded tolerance graph.

4. The recognition of tolerance graphs.
In this section we show that the reduction from the monotone-NAE-3-SAT problem to the problem of recognizing bounded tolerance graphs presented in section 3 can be extended to the problem of recognizing general tolerance graphs. In particular, we prove that a given monotone 3-CNF formula ϕ is NAE-satisfiable if and only if the graph H_{ϕ} constructed in section 3.2 is a tolerance graph.

4.1. Structural properties of tolerance graphs.
In the following we assume without loss of generality that any tolerance graph has a tolerance representation, in which all tolerances are distinct and no two different intervals share an endpoint [13, 14]. We state now similarly to [14, 15] some definitions and lemmas concerning tolerance graphs.

In a certain tolerance representation (I, t) of a tolerance graph $G = (V, E)$, a vertex v is called **bounded** if $t_v \leq |I_v|$; otherwise, v is called...
unbounded. An unbounded vertex v of G is called inevitable (for a certain tolerance representation) if v is not an isolated vertex and if setting $t_v = |I_v|$ creates a new edge in the representation, that is, the representation is no longer a tolerance representation of G. A tolerance representation of G is called inevitable unbounded if every unbounded vertex in this representation is inevitable. For an inevitable unbounded vertex v of G (for a certain tolerance representation), a vertex u is called a hovering vertex of v if $uv \notin E$ and $I_v \subseteq I_u$. The next lemma follows easily from the above definitions.

Lemma 21. There exists a hovering vertex u for every inevitable unbounded vertex v of the tolerance graph G (for a certain tolerance representation).

Proof. Since v is an inevitable unbounded vertex, setting $t_v = |I_v|$ creates a new edge in G; let uv be such an edge. Then, clearly $I_u \cap I_v \neq \emptyset$. Since initially $uv \notin E$, it follows that $|I_u \cap I_v| < \min(t_u, t_v) \leq t_v$. Furthermore, since setting $t_v = |I_v|$ creates a new edge in G, we obtain that $\min\{|I_u, I_v\} \leq |I_u \cap I_v| < t_v$, and thus, $|I_u \cap I_v| = |I_v|$, i.e., $I_v \subseteq I_u$. Therefore, since $uv \notin E$ and $I_v \subseteq I_u$, it follows that u is a hovering vertex of v. \qed

Lemma 22. (see [25]). Every tolerance representation can be transformed into an inevitable one in $O(n \log n)$ time.

Lemma 23. Let v be an inevitable unbounded vertex of a tolerance graph G and u be a hovering vertex of v, in a certain tolerance representation of G. Then, $N(v) \subseteq N(u)$ in G.

Proof. Since v is an inevitable unbounded vertex, $N(v) \neq \emptyset$. Let $w \in N(v)$ be a neighbor of v in G. Since u is a hovering vertex of v, it follows that $uv \notin E$, and thus, $w \neq u$. Furthermore, since $uv \notin E$, and since v is unbounded, we obtain that $\min(t_u, t_w) \leq |I_u \cap I_v| \leq |I_v| < t_v$, and thus, $t_w \leq |I_u \cap I_v|$. Then, since $I_u \subseteq I_v$, it follows that $|I_u \cap I_v| \leq |I_u \cap I_v|$, and thus, $t_w \leq |I_u \cap I_v|$, i.e., $w \in N(u)$. Therefore, $N(v) \subseteq N(u)$ in G. \qed

4.2. The reduction.

Consider now a monotone 3-CNF formula ϕ and the trapezoid graph H_ϕ constructed from ϕ in section 3.2.

Lemma 24. In the trapezoid graph H_ϕ, there are no two vertices u and v such that $uv \notin E(H_\phi)$ and $N(v) \subseteq N(u)$ in H_ϕ.

Proof. The proof is done by investigating all cases for a pair of nonadjacent vertices u, v. First, observe that, by the construction of H_ϕ from G_ϕ, we have $N[u_{i,2}] = N[u_{i,3}], N[u_{i,1}] = N[u_{i,2}] \cup \{u_i\}$, $N[u_{i,5}] = N[u_{i,6}]$, and $N[u_{i,4}] = N[u_{i,5}] \cup \{u_i\}$.

Consider first two vertices u_i and u_k in H_ϕ for some $i, k = 1, 2, \ldots, m$ and $i \neq k$. Then, by the construction of H_ϕ from G_ϕ, and since u_i and u_k are nonadjacent, $u_i, u_k \in N(u_i) \setminus N(u_k)$ and $u_{k,1} \in N(u_k) \setminus N(u_i)$. Consider next the vertices u_i and $u_{k,j}$ for some $i, k = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, 6$. If $i = k$, then $j \in \{2, 3, 5, 6\}$, since $u_{i,1,4} \in N(u_i)$. In the case where $j \in \{2, 3\}$, we have $u_{i,4} \in N(u_{i}) \setminus N(u_{i,j})$ and $u_{k,5-j} \in N(u_{k,j}) \setminus N(u_i)$, while in the case where $j \in \{5, 6\}$, we have $u_{i,1} \in N(u_i) \setminus N(u_{i,j})$ and $u_{k,11-j} \in N(u_{k,j}) \setminus N(u_i)$. Suppose that $i \neq k$. Then, it follows by the construction of H_ϕ from G_ϕ that $u_{i,1} \in N(u_i) \setminus N(u_{k,j})$. Furthermore, if $j \in \{1, 2, 3\}$ (resp., $j \in \{4, 5, 6\}$), then $u_{k,j'} \in N(u_{k,j}) \setminus N(u_i)$ for any index $j' \in \{1, 2, 3\} \setminus \{j\}$ (resp., $j' \in \{4, 5, 6\} \setminus \{j\}$).

Finally, consider the vertices $u_{i, \ell}$ and $u_{k,j}$ for some $i, k = 1, 2, \ldots, m$ and $\ell, j = 1, 2, \ldots, 6$. If $i = k$, then without loss of generality $\ell \in \{2, 3\}$ and $j \in \{4, 5, 6\}$, since $u_{i,\ell}$ and $u_{k,j}$ are nonadjacent. In this case, $u_{i,\ell} \in N(u_{i,\ell}) \setminus N(u_{k,j})$ and $u_{k,j'} \in N(u_{k,j}) \setminus N(u_{i,\ell})$ for all indices $j' \in \{1, 2, 3\} \setminus \{\ell\}$ and $j' \in \{4, 5, 6\} \setminus \{j\}$. Suppose that $i \neq k$. If $j \in \{1, 2, 3\}$ (resp., $j \in \{4, 5, 6\}$), let j' be any index of $\{1, 2, 3\} \setminus \{j\}$.
(resp., $\{4,5,6\} \setminus \{j\}$). Similarly, if $\ell \in \{1,2,3\}$ (resp., $\ell \in \{4,5,6\}$), let ℓ' be any index of $\{1,2,3\} \setminus \{\ell\}$ (resp., $\{4,5,6\} \setminus \{\ell\}$). Then, it follows by the construction of H_ϕ from G_ϕ that $u_{i',\ell'} \in N(u_{i,\ell}) \setminus N(u_{k,j})$ and $u_{k,j'} \in N(u_{k,j}) \setminus N(u_{i,\ell})$.

Therefore, for all possible choices of nonadjacent vertices u,v in the trapezoid graph H_ϕ, we have $N(u) \setminus N(v) \neq \emptyset$ and $N(v) \setminus N(u) \neq \emptyset$, which proves the lemma.

Lemma 25. If H_ϕ is a tolerance graph, then it is a bounded tolerance graph.

Proof. Suppose that H_ϕ is a tolerance graph, and consider a tolerance representation R of H_ϕ. Due to Lemma 22, we may assume without loss of generality that R is an inevitable unbounded representation. If R has no unbounded vertices, then we are done. Otherwise, there exists at least one inevitable unbounded vertex v in R which has a hovering vertex u by Lemma 21, where $uv \notin E(H_\phi)$. Then, $N(v) \subseteq N(u)$ in H_ϕ by Lemma 23, which contradicts Lemma 24. Thus, there exists no unbounded vertex in R; i.e., H_ϕ is a bounded tolerance graph.

Theorem 26. The formula ϕ is NAE-satisfiable if and only if H_ϕ is a tolerance graph.

Proof. Suppose that ϕ is NAE-satisfiable. Then, by Theorem 19, H_ϕ is a bounded tolerance graph, and thus, H_ϕ is a tolerance graph. Suppose conversely that H_ϕ is a tolerance graph. Then, by Lemma 25, H_ϕ is a bounded tolerance graph. Thus, ϕ is NAE-satisfiable by Theorem 19.

Therefore, since monotone-NAE-3-SAT is NP-complete, the problem of recognizing tolerance graphs is NP-hard by Theorem 26. Moreover, since the recognition of tolerance graphs lies in NP [17], and since H_ϕ is a trapezoid graph, we obtain the following theorem.

Theorem 27. It is NP-complete to decide whether a given graph G is a tolerance graph, even if G is a trapezoid graph.

5. Concluding remarks. In this article we proved that both tolerance and bounded tolerance graph recognition problems are NP-complete by providing a reduction from the monotone-NAE-3-SAT problem, thus answering a longstanding open question. Furthermore, our reduction implies that, given a trapezoid graph, it is NP-complete to decide whether this graph is a tolerance or a bounded tolerance (i.e., parallelogram) graph. A unit interval representation is an interval representation in which all intervals have the same length. A proper interval representation is one in which no interval is properly contained in another. These terms can apply to both interval graphs and tolerance graphs. It is known that the subclasses of unit and proper interval graphs are equal [28], but the corresponding tolerance subclasses are different [2]. The recognition of unit and of proper tolerance graphs, as well as the recognition of any other subclass of tolerance graphs, except bounded tolerance and bipartite tolerance graphs [5], remain interesting open problems [15].

REFERENCES

THE RECOGNITION OF TOLERANCE GRAPHS 1257

