We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations.

Gottlieb, S. and Tone, F. and Wang, C. and Wang, X. and Wirosoetisno, D. (2012) 'Long time stability of a classical efficient scheme for two-dimensional Navier-Stokes equations.', SIAM journal on numerical analysis., 50 (1). pp. 126-150.


This paper considers the long-time stability property of a popular semi-implicit scheme for the two-dimensional incompressible Navier–Stokes equations in a periodic box that treats the viscous term implicitly and the nonlinear advection term explicitly. We consider both the semidiscrete (discrete in time but continuous in space) and fully discrete schemes with either Fourier Galerkin spectral or Fourier pseudospectral (collocation) methods. We prove that in all cases, the scheme is long time stable provided that the timestep is sufficiently small. The long time stability in the L2 and H1 norms further leads to the convergence of the global attractors and invariant measures of the scheme to those of the Navier–Stokes equations at vanishing timestep.

Item Type:Article
Keywords:Two-dimensional Navier–Stokes equations, Semi-implicit schemes, Global attractor, Invariant measures, Spectral, Collocation.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:Copyright © by SIAM
Date accepted:No date available
Date deposited:23 March 2012
Date of first online publication:2012
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar